Cho hình vuông ABCD cạnh a, E và F là hai điểm di động trên cạnh AB và AD sao cho AE + EF + AF= 2a. Gọi H là hình chiếu vuông góc của C trên EF.
a) Chứng minh H thuộc 1 đường tròn
cố định.
b) Tìm vị trí của E, F sao cho diện tích tam giác CEF lớn nhất
Cho hình vuông ABCD , cạnh đều bằng a , E và F là 2 điểm di động trên cạnh AB và AD sao cho AE+EF+AF= 2a . Gọi H là hình chiếu vuông góc cuả C trêm EF.
a) c/m : H thuộc 1 đường tròn cố định.
b) Tìm vị trí của E,F sao cho S tam giác CEF lớn nhất
Cho hình vuông ABCD cạnh a. Trên hai cạnh AB và AD lần lượt lấy hai điểm di động E và F sao cho AE + EF + FA = 2a.
1) Chứng tỏ rằng đường thẳng EF luôn luôn tiếp xúc với một đường tròn cố
định.
2) Tìm vị trí của E, F sao cho diện tích tam giác CEF lớn nhất. Tìm giá trị lớn
nhất đó.
Cho đường thẳng d và một điểm A cố định nằm ngoài đường thằng d, H là hình chiếu vuông góc của A xuống d. Hai điểm B,C thay đổi trên d sao cho góc BAC vuông. E,F lần lượt là hình chiếu vuồn góc của H xuống AB,AC. J,K lần lượt là hình chiếu vuông góc của F lên EC,BC. Chứng minh rằng:a, Bốn điểm B,E,F,C cùng thuộc đường tròn O.b,Ba điểm A,J,K thẳng hàng.c, Đường tròn O luôn đi qua 2 điểm cố định.
Cho e hỏi câu c ạ.
Cho đường thẳng d và một điểm A cố định nằm ngoài đường thằng d, H là hình chiếu vuông góc của A xuống d. Hai điểm B,C thay đổi trên d sao cho góc BAC vuông. E,F lần lượt là hình chiếu vuồn góc của H xuống AB,AC. J,K lần lượt là hình chiếu vuông góc của F lên EC,BC. Chứng minh rằng:a, Bốn điểm B,E,F,C cùng thuộc đường tròn O.b,Ba điểm A,J,K thẳng hàng.c, Đường tròn O luôn đi qua 2 điểm cố định.
Cho em hỏi câu c nhé..
Cho tam giác ABC vuông cân tại A, đường cao AH, điểm M di động trên đoạn thẳng AH. Gọi D và E lần lượt là hình chiếu vuông góc của M lên AB,AC và F là hình chiếu của D trên EH.
a/Chứng minh các điểm B,M,F thẳng hàng
b/Xác định vị trí điểm M trên AH để diện tích tam giác AFB lớn nhất
1,Cho tam giác ABC. Trên cạnh AC lấy điểm E cố định , trên cạnh BC lấy điểm F cố định ( E khác A và C; F khác B và C). Trên cạnh AB lấy điểm D di động ( D khác A và B) . Hãy xác định vị trí điểm D trên đường thẳng AB sao cho DE^2+DF^2 có giá trị nhỏ nhất.
2,Cho tam giác ABC vuông tại A có đường cao AH. Gọi I là tâm đg tròn nội tiếp tam giác, E,F,D lần lượt là hình chiếu của I trên AC, AB,BC.Gọi M là trung điểm AC.MI cắt AB tại N.FD cắt AH tại P. Chứng minh AN=AP
Cho nửa đường tròn (O;R) đường kính BC. Gọi A là điểm di động trên nửa đường tròn. Kẻ AD vuông góc BC sao cho đường tròn đường kính AD cắt AB,AC và (O) tại E,F,G. Đường thẳng AG cắt BC tại H.
1) Tính \(\frac{AD^3}{BE.CF}\)theo R ? Chứng minh H,E,F thẳng hàng ?
2) Chứng minh: FG.CH + GH.CF = CG.HF ?
3) Trên BC lấy M cố định. Lấy N,P lần lượt là tâm ngoại tiếp các tam giác MAB,MAC. Xác định vị trí điểm A để SMNP Min ?
1.cho hình vuông ABCD tâm O .Gọi M,N là trung điểm của OA,BC.Chứng minh C,M,N,D nằm trên một đường tròn và DN>MC
2.Cho hình vuông ABCD cạnh a.Lấy M và N trên cạnh AB và AD sao cho chu vi tam giác AMN bằng 2a.Gọi H là hình chiếu của C lên MN.P nằm trên tia đối của tia DA với DP = BM
1) Chứng minh NP = MN
2) So sánh hai tam giác CPN và CMN rồi chứng minh H luôn luôn di động trên một đường cố định
3.Lấy các điểm E,F,G,H trên các cạnh AB,BC,CD,DA của hình vuông ABCD sao cho AE=BF=CG=DH .
1) Chứng minh E,F,G,H nằm trên một đường tròn
2) Gọi O là tâm của hình vuông ABCD.Chứng minh O cũng là tâm EFGH
3) Xác định vị trí của E,F,G,H để diện tích EFGH nhỏ nhất