Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hiếu Nguyễn

Cho hình vuông ABCD có hai đường chéo cắt nhau tại E. Một đường thắng qua A, cắt cạnh BC tại M và cắt đường thẳng CD tại N. Gọi K là giao điểm của hai đường thẳng EM và BN. Chứng minh rằng: a) AB^2 = BD. BE b) Tam giác BEM đồng dạng với tam giác DNB c) KM là phân giác của góc BKC

giúp mk với mk cần gấp

Nguyễn Lê Phước Thịnh
14 tháng 7 2023 lúc 10:21

a: ABCD là hình vuông

=>AE là phân giác của góc BAD

=>góc ABE=góc DAE=45 độ

Xét ΔABE và ΔABD có

góc ABE chung

góc ADE=góc ABE=45 độ

=>ΔABE đồng dạng với ΔDBA

=>AB/BD=BE/AB

=>AB^2=BD*BE

b: góc EBM=góc MBA+góc ABE=135 độ

góc NDB=góc NDA+góc ADB=135 độ

=>góc EBM=góc NDB

Xét ΔBEM và ΔDNB có

góc EBM=góc NDB

góc BEM=góc DNB

=>ΔBEM đồng dạng với ΔDNB


Các câu hỏi tương tự
Bình Phùng Thị
Xem chi tiết
Phan Ngọc Khuê
Xem chi tiết
Hoang Minh Quan
Xem chi tiết
Nguyễn Quỳnh Anh
Xem chi tiết
Huong Giang
Xem chi tiết
Bảo Châu Trần
Xem chi tiết
Kim Tae Huynh  123
Xem chi tiết
Nguyễn Hữu Tuân
Xem chi tiết
Nguyễn Tất Đạt
Xem chi tiết