Chọn đáp án C.
Gọi O là tâm của hình vuông ABCD
Khi đó, bán kính đường tròn ngoại tiếp hình vuông ABCD là R = OA
Áp dụng đinh lí Pytago vào tam giác vuông ABC ta có:
Chọn đáp án C.
Gọi O là tâm của hình vuông ABCD
Khi đó, bán kính đường tròn ngoại tiếp hình vuông ABCD là R = OA
Áp dụng đinh lí Pytago vào tam giác vuông ABC ta có:
cho đường tròn tâm O bán kính R có 2 đường kính AC và BD vuông góc với nhau. Gọi M là trung điểm OB. Tia AM cắt đt O ở E
A) tứ giác ABCD là hình gì? S tứ giác ABCD theo R ?
B) Cm OMEC nội tiếp và tính diện tích hình tròn ngoại tiếp tứ giác OMEC theo R
C) CM AM.AE=2 \(R^{2}\)
a) Vẽ đường tròn tâm O, bán kính 2cm.
b) Vẽ hình vuông nội tiếp đường tròn (O) ở câu a).
c) Tính bán kính r của đường tròn nội tiếp hình vuông ở câu b) rồi vẽ đường tròn (O; r).
Cho đường tròn tâm O bán kính R . Có 2 bán kính OB và OC vuông gíc với nhau . Các tiếp tuyến B và C cát nhau tại A.
1, Chứng minh tứ giác ABOC là hình vuông .
2 , Tia OA cắt đường tròn tâm O tại M . Tiếp tuyến M của đường tròn tâm O cắt AB và AC lần lượt tai D và E . Tính góc DOE
3 , Tính chu vi tam giác ADE và cạnh MB theo R
a) Vẽ hình vuông cạnh 4cm.
b) Vẽ đường tròn ngoại tiếp hình vuông đó. Tính bán kính R của đường tròn này.
c) Vẽ đường tròn nội tiếp hình vuông đó. Tính bán kính r của đường tròn này.
Cho hình vuông ABCD có tâm O. Gọi R,r là bán kính đường tròn ngoại tiếp và nội tiếp hình vuông ABCD.Kẻ OH⊥CD,chứng minh OH=HD
Cho hình bình hành ABCD. Đường tròn (O;R) đi qua A và B, đường tròn (I;R) đi qua B và C.(O) và (I) cắt nhau tại điểm thứ 2 là M. CMR: bán kính đường tròn ngoại tiếp tam giác ADM bằng R.
Cho tam giác ABC vuông tại A . Gọi O là tâm đường tròn ngoại tiếp tam giác ABC ; d là tiếp
tuyến của đường tròn tại A . Các tiếp tuyến của đường tròn tại B và C cắt d theo thứ tự ở D và E .
a) Tính góc DOE .
b) Chứng minh : DE = BD + CE .
c) Chứng minh : BD.CE = \(R^2\) ( R là bán kính đường tròn tâm O )
d) Chứng minh BC là tiếp tuyến của đường tròn có đường kính DE .
Từ điểm A ở ngoài đường tròn tâm O bán kính R, kẻ 2 tiếp tuyến AB, AC
( B,C là 2 tiếp điểm ). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC, tính OH.OA theo R
b) Kẻ đường kính BD của đường tròn tâm O. Chứng minh CD // OA
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm của CE
Cho hai đường tròn (O) và (O') có cùng bán kính R cắt nhau tại 2 điểm A, B sao cho tâm O nằm trên đường tròn (O') và tâm O' nằm trên đường tròn tâm O. Đường nối tâm OO' cắt AB tại H, cắt đường tròn (O') tại giao điểm thứ 2 là C. Gọi F là điểm đối xứng của B qua O'.
a, CMR AC là tiếp tuyến của (O) và AC vuông góc với BF
b, Trên cạnh AC lấy điểm D sao cho AD = AF. Qua D kẻ đường thẳng vuông góc với OC và cắt OC tại K, cắt AF tại G. Gọi E là giao điểm của AC và BF. CM tứ giác AHO'E, ADKO nội tiếp
c, Tứ giác AHKG là hình gì? Vì sao?
d, Tính diện tích phần chung của hình (O) và (O') the bán kính R