Đáp án D
a → . b → = 12.3. cos 120 ° = − 18
Đáp án D
a → . b → = 12.3. cos 120 ° = − 18
Cho hình vuông ABCD cạnh a. M là điểm thuộc cạnh AB. Biểu thức D M → . B C → bằng
A. a 2
B. − 2 a 2
C. 2 a 2
D. - a 2
Cho hình vuông ABCD cạnh a. M là trung điểm của AB, Tính giá trị các biểu thức sau: ( A B → + A D → ) . ( B D → + B C → )
A. a2
B. –a2
C. 2a2
D. Đáp án khác
1)Cho hình bình hành ABCD, xác định các vectơ DA+DC,AB+DA.
2)Cho 5 điểm A, B, C, D, E. Chứng minh rằng: AC-ED+CD+EC-BC = AB
3)Cho hình vuông ABCD, tâm O cạnh bằng a.
a) Xác định vecto BA+DA+AC, AB+CA+BC, AB+AC.
b) Tính độ dài vecto DA+DC, AB-BC
Trong mặt phẳng tọa độ Oxy, cho các điểm M(0,4) và P(9, -3) .Tọa độ điểm N đối xứng với điểm M qua điểm P là : A. N(18,10) B. N(18, -10) C. N(9/2 ; 1/2) D. N(9; -7)
cho hình vuông ABCD có cạnh a. Gọi d là đường thẳng qua D và song song với AC. M là điểm tùy ý trên d. Giá trị nhỏ nhất của biểu thức\(T=\left|\overrightarrow{MA}+2\overrightarrow{MB}+3\overrightarrow{MC}\right|\)
Cho hình thang ABCD vuông tại A và D có AB=6a, CD=3a và AD=3a. Gọi M là điểm thuộc cạnh AD sao cho MA=a. Tính (vectoMB+2vectoMC). vectoCB
1. Cho A(3;1),B(-1;1),C(6;0). Tìm tọa độ đỉnh D của hình thang cân ABCD với cạnh đáy AB,CD.
2. Cho A(1;2),B(-1;0).Tìm tập hợp điểm M(x;y) thỏa mãn: MA^2=MB^2.
3. Cho A(1;2),B(3;4). Tìm M thuộc Ox sao cho M,A,B thẳng hàng.
trong mặt phẳng hệ tọa độ Oxy cho hình thang cân ABCD có hai đường chéo BD và AC vuông góc với nhau tại H và AD 2 BC. Gọi M là điểm nằm trên cạnh AB sao cho AB 3 AM N là trung điểm HC. biết B 1 3 đường thẳng HM đi qua T 2 3 đường thẳng DN có phương trình x 2y 2 0 . tìm tọa độ các điểm A,C,D
Cho hình bình hành ABCD có tâm I, đường thẳng qua B vuông góc với BD cắt AI tại M, đường thẳng qua D vuông góc với BD cắt AB tại N. Biết pt DM: x+y-4=0, điểm E(5;0) thuộc NI, trung điểm của BI là P(-1/2;-3). Tìm tọa độ A,B,C,D