a: Xét ΔOBD và ΔOAC có
\(\widehat{OBD}=\widehat{OAC}\)
OB=OA
\(\widehat{BOD}\) chung
Do đó: ΔOBD=ΔOAC
=>BD=AC; OD=OC
OB+BC=OC
OA+AD=OD
mà OB=OA và OC=OD
nên BC=AD
b: Xét ΔADC và ΔBCD có
AD=BC
CD chung
AC=BD
Do đó: ΔADC=ΔBCD
c: ΔADC=ΔBCD
=>\(\widehat{IDC}=\widehat{ICD}\)
=>ΔIDC cân tại I
=>ID=IC
ID+IB=BD
IC+IA=AC
mà ID=IC và BD=AC
nên IB=IA
d: Xét ΔOAI và ΔOBI có
OA=OB
AI=BI
OI chung
Do đó: ΔOAI=ΔOBI
=>\(\widehat{AOI}=\widehat{BOI}\)
=>OI là phân giác của góc AOB
=>OI là phân giác của góc COD
ΔCOD cân tại O
mà OI là đường phân giác
nên OI\(\perp\)CD
a, xét tam giác OBD và tam giác OAC có:
góc O chung
OA=OB(gt)
góc OAC= góc OBD(gt)
=>tam giác OBD= tam giác OAC (g.c.g)
=>\(\left\{{}\begin{matrix}AC=BD\\OC=OD\end{matrix}\right.\)(2 cạnh tương ứng)
b, Nối D với C
Xét tam giác ADC và tam giác BCD có:
AD=BC ( cmt)
BD=AC(cmt)
CD cạnh chung
=>tam giác ADC =tam giác BCD (c.c.c)