Cho hình thang ABCD (AB//CD). Gọi O là giao điểm hai đường chéo AC và BD. Đường thẳng qua O vuông góc với AB và CD lần lượt tại H và K. Chứng minh OH/OK = AB/CD
Cho hình chữ nhật ABCD có AD = 6cm , AB = 8cm , hai đường chéo AC và BD cắt nhau tại O . Qua D kẻ đường thẳng d vuông góc với BD , d cắt tia BC tại E
a, Kẻ CH vuông góc với DE tại H , gọi K là giao điểm của OE và HC . Chứng minh rằng K là trung điểm của HC và tính tỉ số diện tích của tam giác EHC và diện tích EDB
b, Chứng minh rằng : Ba đường thẳng OE , CD , BH đồng quy
Cho hinh thang ABCD(AB//CD),O là giao điểm 2 đường chéo AC và BD
a) chứng minh rằng OA.OD=OB.OC
b)đường thẳng O vuông góc với AB và CD theo thứ tự H và K
chứng minh rằng OH/OK=AB/CD
c) tìm trên đường chéo BD điểm M sao cho đường thẳng qua M // với AB bị 2 cạnh AD,BC và hai đường chéo AC và BD chia thành 3 phần bằng nhau
Cho hình chữ nhật ABCD có AD = 6 cm , AB = 8 cm , hai đường chéo AC và BD cắt nhau tại O , Qua D kẻ đường thẳng d vuông góc với BD , d cắt tia BC tại E
a) Chứng minh rằng tam giác BDE đồng dạng với tam giác DCE
b) Kẻ CH vuông góc CE tại H , chứng minh rằng : DC^2 = CH * DB
c) Gọi K là giao điểm của OE và HC . Chứng minh rằng K là trung điểm của HC , và tính tỉ số diện tích của tam giác EHC và tam giác EDB
d) Chứng minh rằng ba đường thẳng OE , CD , BH đồng quy
Cho hình chữ nhật ABCD có AD = 6 cm , AB = 8 cm , hai đường chéo AC và BD cắt nhau tại O , Qua D kẻ đường thẳng d vuông góc với BD , d cắt tia BC tại E
a) Chứng minh rằng tam giác BDE đồng dạng với tam giác DCE
b) Kẻ CH vuông góc CE tại H , chứng minh rằng : DC^2 = CH * DB
c) Gọi K là giao điểm của OE và HC . Chứng minh rằng K là trung điểm của HC , và tính tỉ số diện tích của tam giác EHC và tam giác EDB
d) Chứng minh rằng ba đường thẳng OE , CD , BH đồng quy
Cho tứ giác ABCD , hai dường chéo AC và BD vuông góc với nhau và cắt nhau tại điểm O . Biết \(\widehat{BAC}=\widehat{BDC}\) > từ O vẽ OK vuông góc CD tại K , đường thẳng OK cắt AB tại I . CHỨNG MINH IA = IB
Cho hình thang ABCD có AB//CD (AB<CD), M là trung điểm AD. Qua M vẽ đường thẳng // với 2 đáy của hình thang cắt 2 đường chéo BD và AC lần lượt tại E,F.
a) Chứng minh N, E, F lần lượt là trung điểm của BC, BD, AC
b) Gọi I là trưng điểm AB, đường thẳng vuông góc với IE cắt với nhau tại E và đường thẳng vuông góc với IF tại F cắt nhau tại K. Chứng minh KC=KD
Cho hình chữ nhật ABCD (AB>AD). Trên cạnh AD,BC lần lượt lấy các điểm M, N sao cho AM=CN
A) CHỨNG MINH RẰNG BM//DN
B) Gọi O là trung điểm của BD. CHỨNG MINH AC, BD, MN đồng quy tại O
C) Qua O vẽ đường thẳng d vuông góc với BD, d cắt AB tại P, cắt CD tại Q. CHỨNG MINH: Tứ giác PBQD là hình thoi
D) Đường thẳng qua B song song với PQ và đường thẳng qua Q song song với BD cắt nhau tại K. CHỨNG MINH: Tứ giác OBKQ là hình chữ nhật và BC _|_(vuông góc ) OK
Cho hình chữ nhật ABCD (AD <AB) . Hai đường chéo AC và BD cắt nhau tại O. Qua D kẻ đường thẳng vuông góc với BD cắt tia BC tại E .
a) Chứng minh tam giác BDE đồng dạng với tam giácDCE .
b) Kẻ CH vuông góc với DE tại H . Chứng minh rằng: 2 . DC CH DB = . Từ đó tính
độ dài CH biết AD = 6cm ; AB = 8cm.
c) Gọi K là giao điểm của OE và HC . Chứng minh:
HK /OD=EK/EO, từ đó suy ra: K là trung điểm của HC .
d) Chứng minh ba đường thẳng ,, OE. CD .BH đồng quy