Gọi K là trung điểm của HD
Xét ΔHDC có
K,M lần lượt là trung điểm của HD,HC
=>KM là đường trung bình của ΔHDC
=>KM//DC và \(KM=\dfrac{DC}{2}\)
mà \(AB=\dfrac{DC}{2}\)
nên KM=AB
KM//DC
DC//AB
Do đó: KM//AB
Xét tứ giác ABMK có
AB//MK
AB=MK
Do đó: ABMK là hình bình hành
=>AK//BM
Xét ΔADM có
MK,DH là đường cao
MK cắt DH tại K
Do đó: K là trực tâm
=>\(AK\perp DM\)
mà AK//BM
nên \(BM\perp DM\)