Đáp án A
Diện tích hình thang cong (H) là:
S = ∫ 1 2 2 1 x d x = ln x 1 2 2 = ln 4
S 1 = 3 S 2 ⇒ S 2 = S 4 ⇔ ln 4 4 = ln 4 4 = ∫ k 2 1 x d x = ln x k 2 = ln 2 k ⇔ 4 4 = 2 k ⇔ k = 2
Đáp án A
Diện tích hình thang cong (H) là:
S = ∫ 1 2 2 1 x d x = ln x 1 2 2 = ln 4
S 1 = 3 S 2 ⇒ S 2 = S 4 ⇔ ln 4 4 = ln 4 4 = ∫ k 2 1 x d x = ln x k 2 = ln 2 k ⇔ 4 4 = 2 k ⇔ k = 2
Cho hình thang cong (H) giới hạn bởi các đường y = 1 x , x = 1 2 , x = 2 và trục hoành. Đường thẳng x = k ( 1 2 < k <2) chia (H) thành hai phần có diện tích là S 1 và S 2 như hình vẽ bên. Tìm tất cả giá trị thực của k để S 1 = 3 S 2 .
A. k = 2
B. k = 1
C. k = 7 5
D. k = 3
Cho hình thang cong (H) giới hạn bởi các đường y = e x , y = 0, x = -2, x= 2. Đường thẳng x = k − 2 < k < 2 chia (H) thành hai phần S 1 , S 2 như hình vẽ dưới. Cho S 1 và S 2 quay quanh trục Ox ta thu được hai khối tròn xoay có thể tích lần lượt là V 1 và V 2 . Xác định k để V 1 = V 2 .
A. k = 1 2 ln e 4 − e − 4 2
B. k = 1 2 ln e 2 + e − 2 2
C. k = 1 2 ln e 4 + e − 4 2
D. k = ln e 4 + e − 4 2
Cho hình phẳng (H) giới hạn bởi các đường y = x x 2 + 1 , x = 3 và hai trục tọa độ. Đường thẳng x = k 0 < k < 3 chia (H) thành hai phần có diện tích S1, S2 như hình vẽ bên. Để S 1 = 6 S 2 t h ì k = k 0 . Hỏi k 0 gần giá trị nào nhất trong các giá trị sau?
A. 0,92.
B. 1,24.
C. 1,52.
D. 1,64.
Cho hình thang cong (H) giới hạn bởi các đường y = e x , y = 0 , x = 0 và x = ln8 Đường thẳng x = k (0 < k < ln8) chia (H) thành hai phần có diện tích là S1 và S2. Tìm k để S1 = S2?
A. k = ln 9 2 .
B. k = ln4.
C. k = 2 3 ln 4 .
D. k = ln5.
Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số: y = x 2 − 6 x + 9 và 2 đường thẳng x = 0, y = 0. Đường thẳng (d) có hệ số k ( k ∈ ℝ ) và cắt trục tung tại điểm A(0;4). Giá trị của k để (d) chia (H) thành 2 phần có diện tích bằng nhau là:
A. − 16 9 .
B. 1 9 .
C. − 1 12 .
D. − 1 18 .
Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số: y = x 2 − 6 x + 9 và 2 đường thẳng x = 0, y = 0. Đường thẳng (d) có hệ số k ( k ∈ ℝ ) và cắt trục tung tại điểm A(0;4). Giá trị của k để (d) chia (H) thành 2 phần có diện tích bằng nhau là:
A. − 16 9 .
B. 1 9 .
C. − 1 12 .
D. − 1 18 .
Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số: y = x 2 − 6 x + 9 và 2 đường thẳng x = 0, y = 0. Đường thẳng (d) có hệ số k ( k ∈ ℝ ) và cắt trục tung tại điểm A(0;4). Giá trị của k để (d) chia (H) thành 2 phần có diện tích bằng nhau là:
A. − 16 9 .
B. 1 9 .
C. − 1 12 .
D. − 1 18 .
Cho hai số thực dương a, b khác 1 và đồ thị của các hàm số y = log a x , y = log b x như hình vẽ bên. Gọi d là đường thẳng song song với trục Oy và cắt trục hoành tại điểm A có hoành độ x=k(k>1) Gọi S1 là diện tích hình phẳng giới hạn bởi y = log a x , d và trục hoành; S2 là diện tích hình phẳng giới hạn bởi y = log b x , d và trục hoành. Biết S1 = 4S2. Mệnh đề nào sau đây đúng ?
A. b = a 4
B. a = b 4
C. b = a 4 ln 2
D. a = b 4 ln 2
Gọi S là diện tích hình phẳng (H) giới hạn bởi các đường y = f x , trục hoành và hai đường thẳng x = − 2, x = 1 (như hình vẽ). Đặt a = − 2 0 f x , b = 0 1 f x d x , mệnh đề nào dưới đây là đúng?
A. S = a − b .
B. S = b - a .
C. S = a + b .
D. S = - a − b .