kẻ BK\(\perp\)DC
Xét ΔAHD vuông tại H có \(tanD=\dfrac{AH}{HD}\)
=>\(\dfrac{5}{HD}=tan45=1\)
=>HD=5/1=5(cm)
Xét ΔAHD vuông tại H và ΔBKC vuông tại K có
AD=BC
\(\widehat{D}=\widehat{C}\)
Do đó: ΔAHD=ΔBKC
=>DH=KC
mà DH=5cm
nên KC=5cm
Ta có: AB//DC
\(H,K\in DC\)
Do đó: AB//HK
Ta có: AH\(\perp\)DC
BK\(\perp\)DC
Do đó: AH//BK
Xét tứ giác ABKH có
AB//KH
AH//BK
Do đó: ABKH là hình bình hành
=>AB=HK=3cm
DC=DH+HK+KC
=5+5+3
=13(cm)