Do AE // DF, nên theo định lý Thales ta có:
\(\dfrac{AE}{DF}=\dfrac{OE}{OF}\). (1)
Do BE // CF, nên theo định lý Thales ta có:
\(\dfrac{BE}{CF}=\dfrac{OE}{OF}\). (2)
Từ (1), (2), kết hợp với gt DF = CF, ta có AE = BE. (đpcm)
Do AE // DF, nên theo định lý Thales ta có:
\(\dfrac{AE}{DF}=\dfrac{OE}{OF}\). (1)
Do BE // CF, nên theo định lý Thales ta có:
\(\dfrac{BE}{CF}=\dfrac{OE}{OF}\). (2)
Từ (1), (2), kết hợp với gt DF = CF, ta có AE = BE. (đpcm)
Cho hình thang ABCD (AB//CD) có O là giao điểm của AD và BC. Gọi F là trung điểm của CD, E là giao điểm của OF và AB. Chứng minh rằng E là trung điểm của AB.
cho hình thang abcd (ab//cd). gọi e là giao của ad và bc, f là giao của ad và bc. chứng minh rằng đường thẳng ef đi qua trung điểm của ab và đi qua trung điểm của cd
Cho hình thang cân ABCD có AB//CD và AB<CD. Gọi O là giao điểm của AD và BC, E là giao điểm của AC và BD
a) Chứng minh ΔOAB cân tại O
b) Chứng minh ΔABD=ΔBAC
c) Chứng minh EC=ED
d) O, E và trung điểm của DC thẳng hàng
Cho hình thang ABCD ( AB//CD), Gọi M,N lần lượt là trung điểm của AB<CD, O là giao điểm của AC và BD; I là giao điểm của AD,BC
a) chứng minh O,I,M,N thẳng hàng
b) Qua O kẻ đường thẳng song song với AB cắt AD,BC lần lượt tại E,F. Chứng minh OE=OF
Cho hình thang ABCD với AB song song CD, AB<CD. Gọi trung điểm của đường chéo BD là M. Qua M kẻ đường thẳng song song với DC cắt AC tại N. Gọi E là trung điểm của AB, O là giao điểm của AD và BC, OE cắt CD tại F. Chứng minh F là trung điểm của CD.
Cho hình thang ABCD, có AB // CD và AB < CD. Gọi M là giao điểm của AD và BC. Gọi H, E, F, G lần lượt là trung điểm của AM, BM, AC, BD. Chứng minh HEFG là hình thang.
cho hình thang ABCD ( AB//CD ) . E là trung điểm của AB, O là giao điểm của AC và BD, F là giao điểm của EO và CD. Chứng minh rằng : F là trung điểm của CD
Cho hình thang ABCD (AB // CD) có AB < CD và N là tr điểm của CD. Gọi I là giao điểm của AD và BC, O là giao điểm của IN và AB a) Chứng minh rằng: IO.ND=OA.IN b) Chứng minh rằng: O là trung điểm của AB
Cho hình thang cân ABCD ( AB // CD ) . Gọi O là giao điểm của AC và BD ; E là giao điểm của AD và BC .
a ) Chứng minh : Tam giác OCD cân
b ) Chứng minh : EO là đường trung trực của : AB ; CD