Cho hình thang ABCD biết A=90, D= 90 và AB<DC . hai đường chéo AC và BD vuông góc với nhau tại O.
a) tính độ dài các đoạn thẳng AD,AO,DO,DC và AC
b) Kẻ BH vuông góc với DC tại H. tính diện tích tam giác COH
c) Đường vuông góc với BC tại B cắt đưuòng thẳng CD ở M. chứng minh BH^2 + MH^2=MH.MC
Cho hình thang ABCD biết A ^ = 90 0 , D ^ = 90 0 và AB < DC. Hai đường chéo AC và BD vuông góc với nhau tại O. Cho AB = 9cm và AD =12 cm. Hãy:
a, Giải tam giác ADB
b, Tính độ dài các đoạn thẳng AO, DO và AC
c, Kẻ BH vuông góc với DC tại H. Tính diện tích tam giác DOH
Cho hình vuông ABCD, có độ dài cạnh bằng a, N là một điểm di chuyển trên AB (N khác A; B). Đường thẳng CN cắt đường thẳng AD tại E, đường thẳng vuông góc với CE tại C cắt AB tại F.
a) Chứng minh 1/CN^2 + 1/CE^2 không đổi.
b) Chứng minh cos AFC = sin EFN. cos FEN + sinFEN. cosEFN.
c) Tìm vị trí của điểm N trên AB để diện tích tứ giác ACFE gấp 3 lần diện tích hình vuông ABCD
Cho hình thang cân ABCD có đáy nhỏ AB bằng đường cao AH bằng x(cm) . Đáy lớn DC bằng 10 (cm) và cạnh bên AD vuông góc với đường chéo AC . Kẻ BK vuông góc với CD tại K
a, Chứng minh rằng AHKB là hình vuông
b, Chứng minh rằng HD=KC=(10-x)/2
c, Tính HC theo x
d, Tìm x
e, Biết AC cắt BK tại F . Chứng minh 1/x^2 = 1/AC^2 +1/AF^2
Mọi người giúp với .Cảm ơn ạ
Giúp mình cách giải luôn nha
Câu 1: Hình thang ABCD (AB // CD) có AC vuông góc BD tại O. Biết AB=3,5 cm; AD=5,2 cm. Gọi M là trung điểm CD. Tính diện tích AMO.
Câu 2: Cho hình thang cân ABCD có đáy nhỏ AB=7cm; BD vuông góc BC. Kẻ BH vuông góc CD(với H thuộc CD). Biết BH=5cm. Tính diện tích ABCD và góc BCD.
Câu 3: Cho hình thang cân ABCD có đáy nhỏ AB=BC= \(\frac{1}{2}\)CD và AC=4cm. Tính góc C và diện tích ABCD.
Câu 4: Cho hình thang cân ABCD có AB//CD, BC=12cm, AC=15cm. Tính góc C và diện tích ABCD.
Câu 5: Cho hình thang vuông ABCD (vuông ở A và B0 có E là trung điểm CD; AE cắt BC tại F. Biết AD=1,5 cm; BC=2,7 cm; AB=2cm. Tính các góc và diện tích của tam giác BEF.
1 , Cho hình vuông ABCD có góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HD
a , Chứng minh rằng ABMN là hình bình hành .
b , Chứng minh rằng N là trực tâm của tam giác AMD
c , Chứng minh rằng góc BMD = 90 độ
d , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .
2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo AC , BD cắt nhau tại O . Vẽ DE , DF lần lượt vuông góc với AB và BC . Chứng minh rằng tam giác EOF cân.
3 , Cho hình thang ABCD có góc A = 60 độ . Trên tia AD lấy M , trên tia Bc lấy N sao cho AM = DN
a , Chứng minh rằng tam giác ADM = tam giác DBN
b , Chứng minh rằng góc MBN = 60 độ
c , Chứng minh rằng tam giác BNM đều .
4 , Cho hình vuông ABCD , vẽ góc xAy = 90 độ . Ax cắt BC ở M , Ay cắt CD ở N
a , Chứng minh rằng tam giác MAN vuông cân
b , Vẽ hình bình hành AMFN có O là giao điểm 2 đường chéo . Chứng minh rằng OA = OC = \(\frac{1}{2}\) AF và tam giác ACF vuông tại C .
5 , Cho hình vuông ABCD . Trên BC lấy điểm E . Từ A kẻ vuông góc với AE cắtt CD tạ F . Gọi I là trung điểm của EF . M là giao điểm của AI và CD . Qua E kẻ đường thẳng song song với CD cắt AI tại N .
a , Chứng minh rằng MENF là hình thang
b , Chứng minh rằng chu vi tam giác CME không đổi khi E chuyển động trên BC .
Bài 1 : Cho hình thang ABCD có độ dài đáy AB bằng 5cm, CD 15cm, đường chéo DB 12cm, AC 16cm. Từ A kẻ đường thẳng song song với BD cắt đường thẳng CD tại E
a. Cm tam giác AEC vuông
b. Tính diện tích hình thang ABCD
Bài 2 : Cho hình chữ nhật ABCD. Qua A kẻ đường thẳng vuông góc đường chéo BD tại H. Biết rằng AB bằng 20cm, AH bằng 12cm. Tính chu vi HCN ABCD
Cho hình thang ABCD ( AB//CD). Một đường thẳng d song song với đáy, cắt 2 cạnh bên AD tại P và cắt BC tại Q; đường thẳng d chia hình thang thành 2 phần có diện tích bằng nhau. Tính độ dài đoạn thẳng PQ; Biết AB= 9 cm và CD = 15 cm.
bài 1: CHo hình thang vuông ABCD có hai đường chéo Ac và BD vuông góc với nhau tại H. biết HD= 18cm, HB= 8cm. Tính diện tích hình thang ABCD
bài 2:Cho tam giác vuông ABC vuông tại A, đường cao Ah. tính độ dài các đoạn thắng BH,AH,AC nếu biết
a, AB=12cm, Ch=12,8cm
b, AB=4 cm, Ch=2/2 cm