Kẻ AH vuông góc DC,BK vuông góc DC
Xéttứ giác ABKH có
AB//KH
AH//BK
=>ABKH là hình bình hành
=>AH=BK
=>\(S_{ADC}=S_{BDC}\)
=>\(S_{ADO}=S_{BOC}\)
\(\dfrac{S_{AOB}}{S_{BOC}}=\dfrac{OA}{OC}=\sqrt{\dfrac{4}{9}}=\dfrac{2}{3}\)
\(\dfrac{S_{AOD}}{S_{DOC}}=\dfrac{OA}{OC}=\dfrac{2}{3}\)
=>\(\dfrac{4}{S_{AOD}}=\dfrac{S_{AOD}}{9}\)
=>\(S_{AOD}=6\left(cm^2\right)\)
=>\(S_{BOC}=6\left(cm^2\right)\)
\(S_{ABCD}=6+6+4+9=10+15=25\left(cm^2\right)\)