Cho \(\left(O;\dfrac{AB}{2}\right)\) . Trên OC lấy B. Gọi M là trung điểmt của AB. Từ M kẻ DE vuông góc với AB. Từ B kẻ BF vuông góc với CD. Gọi S là giao điểm của BD và MF, CS cắt AD , DE tại H, K. CMR : \(\dfrac{DA}{DH}+\dfrac{DB}{DS}=\dfrac{DE}{DK}\)
a) Cm OM vuông góc với BC.
b) Cm \(\frac{1}{OM^2}=\frac{1}{OC^2}+\frac{1}{OB^2}\)
c) Cm AB+CD >=AD
Cho hình bình hành ABCD có góc A < 90. Tia phân giác góc BCD cắt đường tròn ngoại tiếp tam giác BCD tại O. Kẻ đường thẳng (d) đi qua A và vuông góc với CO. đường thẳng d cắt CB,CD lần lượt tại M,N.
a) CMR: góc OBM = góc ODC
b) CMR: 2 tam giác OBM =ODC
C) Gọi K là giao điểm OC , BD. I là tâm đường tròn ngoại tiếp tam giác BCD. CMR: ND/MB = IB2-IK2/KD2
Câu 1: Cho tam giác ABC vuông tại A, gọi O là trung điểm AB. Đường thẳng qua O vuông góc CO cắt đường thẳng qua B vuông góc với AB tại D.
a) Chứng minh rằng AB^2=4AC.BD.
b) M là một điểm bất kì trên CD, gọi E,F lầm lượt là hình chiếu của M trên OC, OD. Chứng minh rằng: MC.MD=EO+FO.FD.
Câu 2: Cho tam giác ABC vuông cân tại A và điểm M thuộc cạnh BC. Kẻ ME,MF lần lượt vuông góc với AB,AC tại E và F. Chứng minh rằng:
a) BM^2= 2ME^2, CM^2 =2MF^2
b) BM^2+CM^2= 2AM^2
Giups mình với huhu, mình đang cần gấp lắm!!
1 . Cho hình vuông ABCD. Gọi O là giao điểm của hai đường chéo. Qua điểm C kẻ đường thẳng Cx song song với BD; Cx cắt AB tại E.
a) Chứng minh tam giác ACE vuông cân
b) Gọi F là điểm đối xứng của O qua AB. Tứ giác AOBF là hình gì? Vì sao?
c) Giả sử APCQ là hình thoi có chung đường chéo AC với hình vuông ABCD. Hãy chứng tỏ 4 điểm P, D, B, Q thẳng hàng
Bài 2:Đường tròn tâm O và một dây AB của đường tròn đó. Các tiếp tuyến vẽ từ A và B của đường tròn cắt nhau tại C. D là một điểm trên đường tròn có đường kính OC (D khác A và B). CD cắt cung AB của đường tròn (O) tại E (E nằm giữa C và D). Chứng minh:
a) Góc BED = góc DAE
b) DE2 = DA.DB
Bài 3:Cho (O) dây AB vuông góc dây CD M là trung điểm BC. Chứng minh rằng OM=1/2AD
Cho hình thang ABCD có góc A=D=90 độ,và 2 dg chéo vg góc tại O.
a,Cmr hình thang này có chiều cao =trung bình nhân của 2 đáy
b,Cho AB=9cm,CD=16cm,tính Sabcd
c,tính độ dài OA,OB,OC,OD
1 , Cho hình vuông ABCD có góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HD
a , Chứng minh rằng ABMN là hình bình hành .
b , Chứng minh rằng N là trực tâm của tam giác AMD
c , Chứng minh rằng góc BMD = 90 độ
d , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .
2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo AC , BD cắt nhau tại O . Vẽ DE , DF lần lượt vuông góc với AB và BC . Chứng minh rằng tam giác EOF cân.
3 , Cho hình thang ABCD có góc A = 60 độ . Trên tia AD lấy M , trên tia Bc lấy N sao cho AM = DN
a , Chứng minh rằng tam giác ADM = tam giác DBN
b , Chứng minh rằng góc MBN = 60 độ
c , Chứng minh rằng tam giác BNM đều .
4 , Cho hình vuông ABCD , vẽ góc xAy = 90 độ . Ax cắt BC ở M , Ay cắt CD ở N
a , Chứng minh rằng tam giác MAN vuông cân
b , Vẽ hình bình hành AMFN có O là giao điểm 2 đường chéo . Chứng minh rằng OA = OC = \(\frac{1}{2}\) AF và tam giác ACF vuông tại C .
5 , Cho hình vuông ABCD . Trên BC lấy điểm E . Từ A kẻ vuông góc với AE cắtt CD tạ F . Gọi I là trung điểm của EF . M là giao điểm của AI và CD . Qua E kẻ đường thẳng song song với CD cắt AI tại N .
a , Chứng minh rằng MENF là hình thang
b , Chứng minh rằng chu vi tam giác CME không đổi khi E chuyển động trên BC .
Cho tam giác ABC nhọn, vẽ đường tròn ( O; \(\dfrac{1}{2}\) BC ) cắt các cạnh AB, AC theo thứ tự tại D và E
a CM CD vuông góc với AB ; BE vuông góc với AC
b Gọi K là giao điểm của BE và CD. Chứng minh AK vuông góc với BC
( chỉ sử dụng kiến thức của sách sgk tập 1 thôi nhé.Tại mình chưa học đến đường tròn nội tiếp)
Cho 2 điểm A và B cố định. Một điểm C khác B di chuyển trên đường tròn (O) đường kính AB sao cho AC>BC. Tiếp tuyến của đường tròn (O) tại C cắt tiếp tuyến A ở D, cắt AB ở E. Hạ AH vuông góc với CD tại H.
a) CMR: AD.CE=CH.DE
b) CMR: OD.BC là 1 hằng số.
c) Giả sử đường thẳng đi qua E, vuông góc với AB cắt AC, BD lần lượt tại F,G. Gọi I là trung điểm của AE. CMR trực tâm của tam giác IGG là 1 điểm cố định.