b)hình thang ABCD cóAB//CD=> góc ABO=góc ODC và góc BAO= góc OCD
=>tam giác ABO đồng dạng với tam giác CDO
=>DO/BO=CO/AO=>DO/BO+DO=CO/CO+OA=>DO/DB=CO/CA
b)hình thang ABCD cóAB//CD=> góc ABO=góc ODC và góc BAO= góc OCD
=>tam giác ABO đồng dạng với tam giác CDO
=>DO/BO=CO/AO=>DO/BO+DO=CO/CO+OA=>DO/DB=CO/CA
Cho hình thang vuông ABCD (∠A = ∠C = 90o) có AC cắt BD tại O.
a) Chứng minh: △OAB ∼ △OCD.
b) Chứng minh: AC2 - BD2 = DC2 - AB2.
c) Qua O kẻ đường thẳng song song với 2 đáy cắt BC tại I, cắt AD tại J. Chứng minh: \(\dfrac{1}{OI}=\dfrac{1}{AB}+\dfrac{1}{CD}\).
Cho hình thang ABCD(AB//CD). gọi o là giao điểm hai đường chéo AC và BD. Chứng minh rằng tam giác OAB đồng dạng với tam giác OCD. Chứng minh OA/AC=OB/BD. Đường thẳng a đi qua O và song song với hai đáy cắt cạnh bên AD tại M.
Cho hình chữ nhật ABCD (AD <AB) . Hai đường chéo AC và BD cắt nhau tại O. Qua D kẻ đường thẳng vuông góc với BD cắt tia BC tại E .
a) Chứng minh tam giác BDE đồng dạng với tam giácDCE .
b) Kẻ CH vuông góc với DE tại H . Chứng minh rằng: 2 . DC CH DB = . Từ đó tính
độ dài CH biết AD = 6cm ; AB = 8cm.
c) Gọi K là giao điểm của OE và HC . Chứng minh:
HK /OD=EK/EO, từ đó suy ra: K là trung điểm của HC .
d) Chứng minh ba đường thẳng ,, OE. CD .BH đồng quy
1, Cho hình thang ABCD có đáy lớn CD. Qua A kẻ đường thẳng AK song song BC ( K thuộc CD ). Qua điểm B kẻ đường thẳng BI song song AD ( I thuộc CD ). BI cắt AC tại F; AK cắt BD tại E. Chứng minh rằng:
a, EF song song AB
b, AB2 = CD.EF
2, Cho tam giác ABC nhọn với H là trực tâm. Gọi M là trung điểm của BC. Các đường trung trực của AC và BC cắt nhau tại O. Chứng minh: AH = 2.OM
Cho hình chữ nhật ABCD có AD = 6cm,AB = 8cm và 2 đường chéo cắt nhau tại O . Qua D kẻ đường thẳng d vuông góc với DB , d cắt tia BC tại E .
a) Chứng minh tam giác BDE đồng dạng với tam giác DCE
b) Kẻ CH vuông góc với DE tại H . Chứng minh DC^2 = CH.DB
c) Gọi K là giao điểm của OE và HC . Chứng minh K là trung điểm của HC và tính tỉ số S tam giác EHC phần S tam giác EDB
d) Chứng minh 3 đường thẳng OE,DC,BH đồng quy
cho hình thang ABCD (AB/CD) có AC=BD . Qua B kẻ đường thẳng song song với AC , cắt đường thẳng DC tại E :
a, chứng minh rằng tam giác BDE cân
b, chứng minh tam giác ACD= tam giác BDC
c, chúng minh hình thang ABCD là hình thang cân
Cho hình thang cân ABCD (AB//CD), AB<CD). AD cắt BC tại O
a) chứng minh rằng tam giác OAB cân
b) Gọi I,J lần lượt là trung điểm của AB và CD. Chứng minh rằng ba điểm I,J,O thẳng hàng
c) Qua điểm M thuộc cạnh AC vẽ đường thẳng song song với CD, cắt BD tại N. Chứng minh rằng MNAB và MNDC là các hình thang cân
cho Hình thang ABCD có AB // CD O là giao điểm của AC và BD a, chứng mình OA/AC = OB/BD. b, Kẻ đường thẳng đi qua O song song với AD cắt CD tại E. Đường thẳng đi qua O song song với BC cắt CD tại F. Chứng minh DE = CF. c, Gọi I là giao điểm của AD và FO, J là giao điểm của BC và EO. Chứng mình IJ // AB. d, Gọi H là giao điểm của AD và BC K là trung điểm của EF. chứng mminhf O,H,K thẳng hàng
cho tam giác abc nhọn các đường cao ad và be cắt nhau tại h. qua a kẻ đường thẳng song song với bc, qua b kẻ đường thảng song song với ad, chứng cắt nhau tại m. a) tứ giác ambd là hình gì? chứng minh b) chứng minh tam giác ahe đồng dạng với tam giác bec, tam giác dec đồng dạng với tam giác abc