Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Linh

Cho hình thang ABCD (AB//CD; AB<CD). Gọi O là giao của hai đường chéo AC và BD. Qua O kẻ đường thẳng song song với AB cắt AD, BC tại M,N

a, chứng minh OA.OD=OB.OC

b, biết AB=5cm; CD=10cm; OC=6cm. Tính OA,OM

c, chứng minh 1/OM = 1/ON = 1/AB + 1/ CD

Trần Tuấn Hoàng
6 tháng 2 2022 lúc 11:35

c. -Xét △ADC có: OM//DC (gt).

\(\Rightarrow\dfrac{MO}{DC}=\dfrac{AO}{AC}\) (định lí Ta-let).

\(\Rightarrow\dfrac{DC}{MO}=\dfrac{AC}{AO}\)

\(\Rightarrow\dfrac{DC}{OM}-1=\dfrac{OC}{AO}\) (1).

-Xét △BDC có: ON//DC (gt).

\(\Rightarrow\dfrac{ON}{DC}=\dfrac{BO}{BD}\) (định lí Ta-let).

\(\Rightarrow\dfrac{DC}{ON}=\dfrac{BD}{BO}\)

\(\Rightarrow\dfrac{DC}{ON}-1=\dfrac{OD}{BO}\)

-Xét △ABO có: AB//DC (gt).

\(\Rightarrow\dfrac{OD}{BO}=\dfrac{OC}{OA}=\dfrac{DC}{AB}\) (3)

-Từ (1), (2),(3) suy ra:

\(\dfrac{DC}{OM}-1=\dfrac{DC}{ON}-1=\dfrac{DC}{AB}\)

\(\Rightarrow\dfrac{DC}{OM}=\dfrac{DC}{ON}=\dfrac{DC}{AB}+1=\dfrac{AB+DC}{AB}\)

\(\Rightarrow\dfrac{1}{OM}=\dfrac{1}{ON}=\dfrac{AB+DC}{AB.DC}=\dfrac{1}{AB}+\dfrac{1}{CD}\)

Nguyễn Lê Phước Thịnh
6 tháng 2 2022 lúc 11:15

a: Xét ΔAOB và ΔCOD có 

\(\widehat{OAB}=\widehat{OCD}\)

\(\widehat{AOB}=\widehat{COD}\)

Do đó: ΔAOB∼ΔCOD

Suy ra: \(\dfrac{OA}{OC}=\dfrac{OB}{OD}=\dfrac{AB}{CD}\)

hay \(OA\cdot OD=OB\cdot OC\)

b: \(\dfrac{OA}{OC}=\dfrac{AB}{CD}\)

\(\Leftrightarrow OA=\dfrac{1}{2}\cdot6=3\left(cm\right)\)

 


Các câu hỏi tương tự
sophie nguyễn
Xem chi tiết
Dư Thị Lan Hương
Xem chi tiết
Khoi Minh
Xem chi tiết
He He
Xem chi tiết
Vũ Thuỳ Dương
Xem chi tiết
Zero Two
Xem chi tiết
bảo ngọc
Xem chi tiết
Lâm Sơn Trà
Xem chi tiết
Bạch Thị Ngọc Điệp
Xem chi tiết