a: Xét ΔABE và ΔKCE có
\(\widehat{ABE}=\widehat{KCE}\)
BE=CE
\(\widehat{AEB}=\widehat{KEC}\)
Do đó: ΔABE=ΔKCE
a: Xét ΔABE và ΔKCE có
\(\widehat{ABE}=\widehat{KCE}\)
BE=CE
\(\widehat{AEB}=\widehat{KEC}\)
Do đó: ΔABE=ΔKCE
Cho hình thang ABCD (AB//CD) có E là trung điểm của BC và góc AED = 90 độ, AE cắt DC tại K. C/m:
a) tam giác ABE = tgiac KCE
b) Tam giác ADK cân
c) DE là tia phân giác của góc ADC
d) SADK = SABCD
Cho hình thang ABCD (AB//CD), AB>CD. E là trung điểm của BC. DE là tia phân giác của góc ADC. K là giao điểm của AE;CD.
a, CM: tam giác ABE= tam giác KCE
b, CM: tam giác ADK cân tại D.
c, CM : góc AED =90 độ
Ai giúp đc ko , nhanh mik tik nha
Cho hình thang ABCD (AB//CD); E là trung điểm của BC ; DE là phân giác góc D ; AE giao DC tại K . CMR :
a,tam giác abe = tam giác kce
b,tam giác adk cân tại d
c,góc aed = 90°
Cho hình thang ABCD(AB//CD) có E thuộc BC sao cho DE là tia phân giác của góc D, góc aed=90 độ, K là giao điểm của AE và DC
a,CM tam giác adk cân tại D
b,E là trung điểm của BC
C,Biết AD=10cm, AE=3cm. tính diện tích ABCD
cho hình thang ABCD (AB//CD) có E là trung điểm BC và góc AED=90 độ. AE cắt CD tại K. Chứng minh tam giác ABE=tam giác KCE, chứng minh De là tia phấn giác góc D
Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thang
Bài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:
a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông
Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của AC và BD. C/minh EA = EB
Bài 4: Cho ABCD là hình thang ( AB // CD, AB < CD ). Kẻ các đường cao AE,BF của hình thang. C/minh rằng DE = CF
Bài 5: Cho ABCD là hình thang ( AB // CD ) có DB là đường phân giác góc D và AE là đường phân giác góc A ( E thuộc DC ). Biết AE // BC và O là giao điểm của AE với DB. CMR:
a) AE vuông góc với DB
b) AD // BE và AD = BE
c) E là trung điểm của DC
d) Xác định dạng của tứ giác BCEO
e) Biết góc BEC = 80 độ. Hãy tính các góc của hình thang ABCD
Cho tam giác ABC có góc B nhọn .Gọi D là điểm đối xứng của B qua trung điểm AC. Gọi H,K lần lượt là hình chiếu vuông góc của A trên đoạn thẳng BC,CD.
a) cm ABCD là hình gì? Vì sao?
b) cm: tam giác AHB~tam giác ADK, tam giác AHK~tam giác DCA
c) Khi góc B =30°. Tính tỷ số diện tích tam giác AHK và diện tích tứ giác ABCD
cho hình thang ABCD ( AB // CD ) có E là trung điểm của BC , góc AED = 90 độ chứng minh de là phân giác góc D
( hướng dẫn : gọi K là giao điểm của AE và DC )
B1)Tứ giác ABCD có AD=BC, các tia DA và CB cắt nhau tại O. Gọi I, K theo thứ tự là trung điểm của AB, CD. Đường thẳng IK cắt các đường thẳng AD, BC theo thứ tự ở E,F. CMR; OEF là tam giác cân
B2) Hình thang ABCD (AB//CD) có AB=a, CD=b, BC= c, AD= d. Các tia phân giác của các góc A và D cắt nhau ở E. Các tia phân giác của các góc B và C cắt nhau ở F. Gọi M, N theo thứ tự là trung điểm của AD, BC.
a)CMR: 4 điểm M, E, F, N thẳng hàng
b) Tính các độ dài MN, MF, FN theo a,b,c,d
c) CMR: a+b= c+d thì E trùng với F
B3) Cho hình thang ABCD (AB//CD) có AB= AD+BC. CMR: các tia phân giác của góc C,D cắt nhau tại một điểm trên cạnh AB.