Cho hàm số y = f(x) liên tục trên đoạn [a;b] Gọi D là hình phẳng giới hạn bởi đồ thị hàm số y = f(x) trục hoành và hai đường thẳng x=a; x=b. Diện tích hình phẳng D được tính bởi công thức.
Diện tích hình phẳng được giới hạn bởi đồ thị hàm số y = x , trục hoành và hai đường thẳng x=1 ; x=4 là
A.4
B.14/5
C.13/3
D.14/3
Tính diện tích hình phẳng giới hạn bởi : Đồ thị hàm số y = x 3 - 4x , trục hoành, đường thẳng x = 2 và đường thẳng x =4
A. 18
B. 24
C.32
D.36
Biết đồ thị hàm số f ( x ) = a x 4 + b x 2 + c cắt trục hoành tại 4 điểm phân biệt. Gọi S 1 là diện tích của hình phẳng giới hạn bởi trục hoành và phần đồ thị hàm số f ( x ) nằm dưới trục hoành. Gọi S 2 là diện tích của hình phẳng giới hạn bởi trục hoành và phần đồ thị hàm số f ( x ) nằm phía trên trục hoành. Cho biết 5 b 2 = 36 a c . Tính tỉ số S 1 S 2
A. S 1 S 2 = 2 .
B. S 1 S 2 = 1 4 .
C. S 1 S 2 = 1 2 .
D. S 1 S 2 = 1 .
Diện tích S của hình phẳng giới hạn bởi đồ thị hàm số y = x 3 - 4 x , trục hoành và hai đường thẳng x=-2, x=4 là:
Biết đồ thị hàm số f x = a x 4 + b x 2 + c cắt trục hoành tại 4 điểm phân biệt. Gọi S 1 là diện tích của hình phẳng giới hạn bởi trục hoành và phần đồ thị hàm số f(x) nằm dưới trục hoành. Gọi S 2 là diện tích của hình phẳng giới hạn bởi trục hoành và phần đồ thị hàm số f(x) nằm phía trên trục hoành. Cho biết 5 b 2 = 36 a c . Tính tỉ số S 1 S 2
A. S 1 S 2 = 2
B. S 1 S 2 = 1 4
C. S 1 S 2 = 1 2
D. S 1 S 2 = 1
Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x + 1 x + 2 , trục hoành và đường thẳng x=2 là.
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x + 1 ln x ; các đường thẳng x=1; x = e 2 và trục hoành
Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x , trục tung, trục hoành và đường thẳng x=1 là:
A. 1
B. 2
C. 1 2
D. 3 2