Cho hình nón xoay có đường cao h = 4, bán kính đáy r = 3. Mặt phẳng (P) đi qua đỉnh của hình nón nhưng không qua trục của hình nón và cắt hình nón theo giao tuyến là một tam giác cân có độ dài cạnh đáy bằng 2. Tính diện tích S của thiết diện được tạo ra.
A. S = 91
B. S = 2 3
C. S = 19
D. S = 2 6
Cắt hình nón đỉnh I bởi một mặt phẳng đi qua trục hình nón ta được một tam giác vuông cân có cạnh huyền bằng a 2 ; BC là dây cung của đường tròn đáy hình nón sao cho mặt phẳng (IBC) tạo với mặt phẳng chứa đáy hình nón một góc 60 ° . Tính theo a diện tích S của tam giác IBC.
A. S = a 2 2 3
B. S = 2 a 2 3
C. S = a 2 3
D. S = a 2 2 6
Căt hình nón đỉnh S bởi mặt phẳng đi qua trục ta được một tam giác vuông cân có cạnh huyền bằng a√2.
a) Tính diện tích xuang quanh, diện tích đáy và thể tích của khối nón twong ứng.
b) Cho một dây cung BC và đường tròn đáy hình nón sao cho mặt phẳng (SBC) tạo với mặt phẳng chứa đáy hình nón một góc 60. Tính diện tích hình vuông và mặt phẳng đáy.
Cho hình nón đỉnh S , đáy là hình tròn tâm O . Thiết diện qua trục của hình nón là tam giác có một góc bằng 120 0 , thiết diện qua đỉnh S cắt mặt phẳng đáy theo dây cung A B = 4 a và là một tam giác vuông. Diện tích xung quanh của hình nón bằng
A. π 3 a 2 .
B. π 8 3 a 2 .
C. π 2 3 a 2 .
D. π 4 3 a 2 .
Cho hình nón (N) có đỉnh S, tâm đường tròn đáy là O, góc ở đỉnh bằng 120 độ. Một mặt phẳng qua S cắt hình nón (N) theo thiết diện là tam giác vuông SAB. Biết rằng khoảng cách giữa hai đường thẳng AB và SO bằng 3, tính diện tích xung quanh S x q của hình nón (N).
A. 27 3 π
B. 18 3 π
C. 9 3 π
D. 36 3 π
Cho khối nón (N) đỉnh S, chiều cao là a 3 và độ dài đường sinh là 3a. Mặt phẳng (P) đi qua đỉnh S, cắt và tạo với mặt đáy của khối nón một góc 60 0 . Tính diện tích thiết diện tạo bởi mặt phẳng (P) và khối nón (N)
A. 2 a 2 5
B. a 2 3
C. 2 a 2 3
D. a 2 5
Cho hình nón tròn xoay có chiều cao bằng 4 và bán kính đáy bằng 3. Mặt phẳng (P) đi qua đỉnh của hình nón và cắt hình nón theo thiết diện là một tam giác cân có độ dài cạnh đáy bằng 2. Diện tích của thiết diện bằng
A. 6
B. 19
C. 2 6
D. 2 3
Cho hình nón (N) có đỉnh S, tâm đường tròn đáy là O, góc ở đỉnh bằng 120 0 . Một mặt phẳng qua S cắt hình nón (N) theo thiết diện là tam giác vuông SAB. Biết rằng khoảng cách giữa hai đường thẳng AB và SO bằng 3, tính diện tích xung quanh S x q của hình nón N .
A. S x q = 36 3 π .
B. S x q = 27 3 π .
C. S x q = 18 3 π .
D. S x q = 9 3 π .
Cho hình nón có đỉnh S, đáy là hình tròn tâm O, bán kính R = 3 c m , góc ở đỉnh của hình nón là φ = 120 0. . Cắt hình nón bởi một mặt phẳng qua đỉnh S tạo thành tam giác đều SAB, trong đó A,B thuộc đường tròn đáy. Diện tích của tam giác SAB bằng
A. 3 3 c m 2 .
B. 6 3 c m 2 .
C. 6 c m 2 .
D. 3 c m 2 .