Cho hình nón đỉnh S có đáy là đường tròn tâm O bán kính R. Trên đường tròn (O) lấy 2 điểm A, B sao cho tam giác OAB vuông. Biết diện tích tam giác SAB bằng R 2 2 , thể tích V của khối nón đã cho bằng
A. V = π R 3 14 2
B. V = π R 3 14 6
C. V = π R 3 14 3
D. V = π R 3 14 12
Cho hình nón đỉnh S có đáy là đường tròn tâm O, bán kính R. Trên đường tròn (O) lấy hai điểm A, B sao cho tam giác OAB vuông. Biết diện tích tam giác SAB bằng R 2 2 , thể tích hình nón đã cho bằng
A. V = π R 3 14 2
B. V = π R 3 14 6
C. V = π R 3 14 12
D. V = π R 3 14 3
Cho hình nón đỉnh S, đáy là hình tròn tâm O, bán kính R=3cm, góc ở đỉnh hình nón là α = 120 ° . Cắt hình nón bởi mặt phẳng qua đỉnh S tạo thành tam giác đều SAB, trong đó A, B thuộc đường tròn đáy. Diện tích tam giác SAB bằng
A. 3 3 c m 2
B. 6 3 c m 2
C. 6 c m 2
D. 3 c m 2
Cho hình nón có đỉnh S, đáy là hình tròn tâm O, bán kính R = 3 c m , góc ở đỉnh của hình nón là φ = 120 0. . Cắt hình nón bởi một mặt phẳng qua đỉnh S tạo thành tam giác đều SAB, trong đó A,B thuộc đường tròn đáy. Diện tích của tam giác SAB bằng
A. 3 3 c m 2 .
B. 6 3 c m 2 .
C. 6 c m 2 .
D. 3 c m 2 .
Một hình nón đỉnh S có chiều cao SO=h. Gọi AB là dây cung của đường tròn (O) sao cho tam giác OAB đều và góc giữa (SAB) và mặt phẳng đáy bằng 60 ° . Tính thể tích V của khối nón sinh bởi hình nón đã cho
A. V = 8 πh 3 27
B. V = 4 πh 3 9
C. V = 4 πh 3 3
D. V = 4 πh 3 27
Cho hình trụ có hai đáy là hai hình tròn tâm O và O', bán kính đáy bằng r và một hình nón có đỉnh là O đáy là hình tròn tâm O'. Biết diện tích xung quanh của hình nón bằng hai lần diện tích đáy của nó. Tính thể tích V của khối trụ giới hạn bởi hình trụ đã cho.
A. V = 4 πr 3 3
B. V = 2 πr 3 3
C. V = 3 πr 3 3
D. V = πr 3 3
Cho hình trụ có hai đáy là hai hình tròn tâm O và O', bán kính đáy bằng r và một hình nón có đỉnh là O đáy là hình tròn tâm O'. Biết diện tích xung quanh của hình nón bằng hai lần diện tích đáy của nó. Tính thể tích V của khối trụ giới hạn bởi hình trụ đã cho.
A. V = 4 πr 3 3
B. V = 2 πr 3 3
C. V = 3 πr 3 3
D. V = πr 3 3
Cho hình nón tròn xoay đỉnh S, đáy là đường tròn tâm O, bán kính đáy r=5. Một thiết diện qua đỉnh là tam giác SAB đều có cạnh bằng 8. Khoảng cách từ O đến mặt phẳng (SAB) bằng
C. 3
Cho hình nón (N) có đỉnh S, tâm đường tròn đáy là O, góc ở đỉnh bằng 120 độ. Một mặt phẳng qua S cắt hình nón (N) theo thiết diện là tam giác vuông SAB. Biết rằng khoảng cách giữa hai đường thẳng AB và SO bằng 3, tính diện tích xung quanh S x q của hình nón (N).
A. 27 3 π
B. 18 3 π
C. 9 3 π
D. 36 3 π