giải bài toán sau đây bằng phương pháp tọa độ:
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng 1. Chứng minh hai mặt phẳng (AB'D') và (BC'D) song song.
giải bài toán sau đây bằng phương pháp tọa độ:
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng 1. Tính khoảng cách giữa hai mặt phẳng nói trên.
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng 3 . Mặt phẳng α cắt tất cả các cạnh bên của hình lập phương. Tính diện tích thiết diện của hình lập phương cắt bởi mặt phẳng α biết α tạo với mặt (ABB'A') một góc 60 0 .
Giải bài toán sau đây bằng phương pháp tọa độ. Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng 1. Tính khoảng cách từ đỉnh A đến các mặt phẳng (A'BD) và (B'D'C).
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a (tham khảo hình vẽ). Khoảng cách giữa hai đường thẳng BD và A'C' bằng:
A. a
B. a 2
C. a 3 2
D. a 3
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Số đo của góc giữa hai mặt phẳng (BA’C) và (DA’C) là
A. 90 0
B. 60 0
C. 30 0
D. 45 0
Cho hình lập phương A B C D . A ' B ' C ' D ' có cạnh bằng a (tham khảo hình vẽ bên). Khoảng cách giữa hai đường thẳng BD và A ' C ' bằng
A. 3 a
B. a
C. 3 2 a
D. 2 a
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Tính khoảng cách giữa hai đường thẳng BD' và B'C
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng 2 a 2 . Gọi S là tổng diện tích tất cả các mặt của bát diện có các đỉnh là tâm của các mặt của hình lập phương ABCD.A'B'C'D'. Khi đó