Cho hình lập phương ABCDA'B'C'D'có cạnh bằng a. Gọi M là điểm thuộc cạnh AB sao cho AM= 1 3 A B . Tính khoảng cách h từ điểm C tới mặt phẳng (B'DM).
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi I là điểm thuộc cạnh AB sao cho AI=a. Tính khoảng cách từ điểm C đến mặt phẳng (B'DI).
Cho khối chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy và khoảng cách từ A đến mặt phẳng (SBC) bằng a 2 2 . Gọi M là điểm thuộc cạnh SD sao cho SM=2MD. Mặt phẳng (ABM) cắt cạnh SC tại điểm N. Thể tích khối đa diện MNABCD bằng
Cho hình lập phương ABCDA'B'C'D' cạnh α . Điểm M đi động trên đoạn BD, điểm N di động trên đoạn AB'. Đặt BM=B'N=t. Đoạn MN bằng a 2 khi t bằng
Cho hình chóp S.ABCD có đáy là hình thoi cạnh bằng 3 a , B A D ^ = 60 o ,SA vuông góc với mặt đáy, góc giữa đường thẳng SC và mặt đáy bằng 45 o Gọi M,N lần lượt là trung điểm các cạnh CD và AB Khoảng cách từ điểm B đến mặt phẳng (SMN) bằng
Cho hình lăng trụ đứng ABC.A’B’C’ có tất cả các cạnh bằng a. Gọi M là trung điểm của CC’. Khoảng cách từ M đến mặt phẳng (A’BC) bằng
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Gọi I là trung điểm của AB và M là trung điểm của AD. Khoảng cách từ I đến mặt phẳng (SMC) bằng
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = 3a, AD = 2a. Hình chiếu vuông góc của S lên mặt phẳng (ABCD) là điểm H thuộc cạnh AB sao cho AH=2HB. Góc giữa mặt phẳng (SCD) và mặt phẳng (ABCD) bằng 60°. Khoảng cách từ A đến mặt phẳng (SBC) là:
A. 2 a 39 13
B. 3 a 39 13
C. a 39 13
D. 6 a 39 13
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, mặt bên SAD là tam giác vuông tại S, hình chiếu của S lên mặt phẳng là điểm H thuộc cạnh AD sao cho AH = 3HD. Gọi M là trung điểm của AB, biết SA = 2a 3 và đường thẳng SC tạo với đáy một góc 30°. Khoảng cách từ điểm M đến mặt phẳng (SBC) là:
A. 2 a 66 11
B. a 66 22
C. a 66 66
D. a 66 11