Cho hình lập phương ABCD.A’B’C’D’. Xét (P) là mặt phẳng thay đổi luôn chứa đường thẳng CD’. Giá trị nhỏ nhất của số đo góc giữa mặt phẳng (P) và mặt phẳng (BDD’B’) bằng
Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2a, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi I là trung điểm của cạnh SC. Xét điểm M thay đổi trên cạnh AB. Giá trị nhỏ nhất của độ dài đoạn thẳng MI bằng
Cho hình chóp đều S.ABCD có đáy ABCD là hình vuông cạnh a, độ dài cạnh bên bằng 2a. Xét điểm M thay đổi trên mặt phẳng (SAB) sao cho tổng T = M A 2 + M B 2 + M C 2 + M D 2 nhỏ nhất. Khi đó, độ dài đoạn thẳng SM bằng
Cho hình lập phương ABCD.A’B’C’D’. Gọi M, N, P lần lượt là trung điểm các cạnh AB, BC, C’D’. Xác định góc giữa hai đường thẳng MN và AP
A. 45 °
B. 30 °
C. 60 °
D. 90 °
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Một đường thẳng d đi qua đỉnh D¢ và tâm I của mặt bên BCC'B'. Hai điểm M, N thay đổi lần lượt thuộc các mặt phẳng (BCC'B') và (ABCD) sao cho trung điểm K của MN thuộc đường thẳng d (tham khảo hình vẽ). Giá trị bé nhất của độ dài đoạn thẳng MN là
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi M, N lần lượt là trung điểm của cạnh AA' và A'B'. Số đo góc giữa hai đường thẳng MN và BD (như hình vẽ bên) là:
A. 45°.
B. 30°.
C. 60°.
D. 90°.
Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gọi M, N lần lượt là trung điểm của AC và B’C’ (tham khảo hình vẽ bên). Khoảng cách giữa hai đường thẳng MN và B’D’ bằng
Cho hình thoi ABCD có B A D ^ = 60 ° , A B = 2 a . Gọi H là trung điểm của AB. Trên đường thẳng d vuông góc với mặt phẳng (ABCD) tại H lấy điểm S thay đổi khác H. Trên tia đối của tia BC lấy điểm M sao cho B M = 1 4 B C . Tính theo a độ dài của SH để góc giữa SC và (SAD) có số đo lớn nhất
A. S H = 21 4 4 a .
B. S H = 21 4 4 a .
C. S H = 21 4 a .
D. S H = 21 4 a .
Cho hình lập phương ABCD.A’B’C’D’ cạnh bằng a. Gọi K là trung điểm DD’. Khoảng cách giữa hai đường thẳng CK và A'D là:
A. 4 a 3
B. a 3
C. 2 a 3
D. 3 a 3