Cho hình lập phương ABCD. A’B’C’D’. Hình chiếu vuông góc của A lên mặt phẳng (A’BD) là:
A. trung điểm của BD
B. trung điểm của A’B
C. trung điểm của A’D
D. tâm O của tam giác BDA’
Cho hình lập phương ABCD.A’B’C’D’ cạnh a.
a) Chứng minh rằng đường thẳng AC’ vuông góc với mặt phẳng (A’BD) và mặt phẳng (ACC’A’) vuông góc với mặt phẳng (A’BD).
b) Tính đường chéo AC’ của hình lập phương đã cho.
Cho hình hộp chữ nhật ABCD. A’B’C’D’ có diện tích các mặt ABCD, BCC’B’, CDD’C’ lần lượt là 2 a 2 , 3 a 2 , 6 a 2 . Tính thể tích khối hộp chữ nhật ABCD. A’B’C’D’
A. 36 a 3
B. 6 a 3
C. 36 a 6
D. 6 a 2
Cho lăng trụ ABCD. A’B’C’D’ có đáy ABCD là hình chữ nhật với AB =a, AD = a 3 Hình chiếu vuông góc của A' lên (ABCD) trùng với giao điểm của AC và BD. Tính khoảng cách từ điểm B' đến mặt phẳng (A’BD)
A. a 3
B. a 2
C. a 3 2
D. a 3 6
Cho hình lập phương ABCD. A’B’C’D’. AC vuông góc với mặt phẳng.
A. (CDD’C’)
B. (A’B’C’D’)
C. (BDD’B’)
D. (A’BD)
Cho hình lập phương ABCD.A’B’C’D’: Hình chiếu vuông góc của A lên mặt phẳng (A’BD) là:
A. trung điểm của BD
B. trung điểm của A’B
C. trung điểm của A’D
D. tâm của tam giác BDA’
Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh a, BCD = 120 0 và AA' = 7 a 2 . Hình chiếu vuông góc của A’ lên mặt phẳng ABCD trùng với giao điểm của AC và BD. Tính theo a thể tích khối hộp ABCD.A’B’C’D’.
Cho hình lập phương ABCD. A’B’C’D’ cạnh a. Tính khoảng cách từ điểm A đến mặt phẳng (A’BC) theo a
A. a 2 2
B. a 3 3
C. a 3 2
D. a 2 3
Cho hình lập phương ABCD.A′B′C′D′. Gọi O là tâm của hình vuông ABCD. Côsin của góc giữa hai mặt phẳng (OA′B′) và (OC′D′) bằng