Cho hình lăng trụ tứ giác đều A B C D . A 1 B 1 C 1 D 1 cạnh đáy bằng 1 và chiều cao bằng x. Tìm x để góc tạo bởi đường thẳng B 1 D và B 1 D 1 C đạt giá trị lớn nhất.
A. 1
B. 0,5
C. 2
D. 2
Trong không gian Oxyz, cho hai điểm A(1;-2;3),B(-3;0;1) và đường thẳng d: x - 2 1 = y + 1 2 = z + 1 - 2 . Điểm M(a;b;c) thuộc d sao cho M A 2 + M B 2 nhỏ nhất. Giá trị biểu thức a+b+c bằng
A. -1.
B. 2.
C. 1.
D. -2.
Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P):x+3y-2z+2=0 và đường thẳng d: x - 1 2 = y + 1 - 1 = z - 4 1 . Đường thẳng qua A(1;2;-1) và cắt (P), d lần lượt tại B và C(a;b;c) sao cho C là trung điểm của AB. Giá trị của biểu thức a+b+c bằng
A. -5
B. -12
C. -15
D. 11
Cho hàm số y = − x + 1 2 x − 1 có đồ thị là (C), đường thẳng d : y = x + m . Với mọi m ta luôn có d cắt (C) tại 2 điểm phân biệt A, B. Gọi k 1 , k 2 lần lượt là hệ số góc của các tiếp tuyến với (C) tại A, B. Tìm m để tổng k 1 + k 2 đạt giá trị lớn nhất.
A. m = -1
B. m = -2
C. m = 3
D. m = -5
Trong không gian Oxyz, có hai mặt phẳng (P),(Q) cách đều hai điểm A(3;-2;0),B(1;0;2) và chứa đường thẳng d: x - 1 3 = y - 1 1 = z + 1 - 2 . Giá trị sin góc tạo bởi hai mặt phẳng (P) và (Q) bằng
A. 2 3
B. 3 2
C. 7 3
D. 1 3
Trong không gian hệ tọa độ Oxyz cho điểm A(1;2;-1); B(7;-2;3) và đường thẳng d: d : x + 1 3 = y - 2 - 2 = z - 2 2 Điểm I(a,b,c) trên d sao cho AI+BI nhỏ nhất. Tính giá trị a+b+c
A.4
B.3
C.6
D. 8
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: x - 3 2 = y + 2 1 = z + 1 - 1 và mặt phẳng (P): x + y + z + 2 = 0. Đường thẳng ∆ nằm trong mặt phẳng (P), vuông góc với đường thẳng d đồng thời khoảng cách từ giao điểm I của d với (P) đến ∆ bằng 42 . Gọi M(5;b;c) là hình chiếu vuông góc của I trên ∆. Giá trị của bc bằng
A. - 10
B. 10
C. 12
D. - 20
Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng ( P ) : x + 3 y - 2 z + 2 = 0 và đường thẳng d : x - 1 2 = y + 1 - 1 = z - 4 1 Đường thẳng qua A 1 ; 2 ; - 1 và cắt (P), d lần lượt tại B và C a ; b ; c sao cho C là trung điểm của AB. Giá trị của biểu thức a + b + c bằng
A. - 5 .
B. - 12 .
C. - 15 .
D. 11.
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A - 2 ; 1 ; 0 , B 4 ; 4 ; - 3 , C 2 ; 3 ; - 2 và đường thẳng d : x - 1 1 = y - 1 - 2 = z - 1 - 1 . Gọi α là mặt phẳng chứa d sao cho A, B, C ở cùng phía đối với mặt phẳng α . Gọi d 1 , d 2 , d 3 lần lượt là khoảng cách từ A, B, C đến α . Tìm giá trị lớn nhất của T = d 1 + 2 d 2 + 3 d 3 .
A. T m a x = 2 21
B. T m a x = 6 14
C. T m a x = 14 + 203 3 + 3 21
D. T m a x = 203