Cho hình lăng trụ đứng tam giác ABC.A'B'C' có tất cả các cạnh đều bằng a. Mặt phẳng đi qua A'B' và trọng tâm tam giác ABC cắt AC và BC lần lượt tại E và F. Tính thể tích V của khối chóp C.A'B'FE.
A. V = 5 a 3 3 54
B. V = 5 a 3 3 18
C. V = 2 a 3 3 27
D. V = 2 a 3 3 9
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt đáy. Gọi M là trung điểm của BC. Mặt phẳng (P) đi qua A và vuông góc với SM cắt SB, SC lần lượt tại E, F. Biết V S . A E F = V S . A B C . Tính thể tích V của khối chóp S.ABC.
A. a 3 2
B. a 3 8
C. 2 a 3 5
D. a 3 12
Cho hình lăng trụ tam giác đều ABC.A′B′C′ có góc giữa hai mặt phẳng (A′BC) và (ABC) bằng 60 0 , cạnh AB = 2. Thể tích V của khối lăng trụ ABC.A′B′C′ là
A. 3 3 4
B. 3
C. 3
D. 3 3
Cho hình chóp S.ABC có đáy là tam giác ABC vuông cân ở B, A C = a 2 . SA vuông góc với mặt phẳng (ABC) và (SA)=a. Gọi G là trọng tâm của tam giác SBC. Một mặt phẳng đi qua hai điểm A, G và song song với BC cắt SB, SC lần lượt tại B’ và C’. Thể tích khối chóp S.A’B’C’ bằng:
A. 2 a 3 9
B. 2 a 3 27
C. a 3 9
D. 4 a 3 27
Cho khối lăng trụ ABC.A′B′C′ có thể tích V, đáy là tam giác cân, AB = AC. Gọi E là trung điểm cạnh AB và F là hình chiếu vuông góc của E lên BC. Mặt phẳng (C′EF) chia khối lăng trụ đã cho thành hai khối đa diện. Tính thể tích của khối đa diện chứa đỉnh A.
A. 47 72 V
B. 25 72 V
C. 29 72 V
D. 43 72 V
Cho hình lăng trụ tam giác đều A B C . A ' B ' C ' có tất cả các cạnh đều bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB và B'C'. Mặt phẳng A ' M N cắt cạnh BC tại P. Tính thể tích V của khối đa diện M B P A ' B ' N
A. V = a 3 3 36
B. V = a 3 3 12
C. V = a 3 7 3 96
D. V = a 3 7 3 48
Cho khối lăng trụ tam giác đều ABC.A′B′C′ có tất cả các cạnh bằng a.Gọi M, N lần lượt là trung điểm của AB, B′C′. Mặt phẳng (A′MN) cắt cạnh BC tại P. Thể tích của khối đa diện MBP.A′B′N bằng
A. 7 a 3 3 32
B. a 3 3 32
C. 7 a 3 3 68
D. 7 a 3 3 96
Cho hình chóp S.ABC có đáy là tam giác vuông cân ở B, A C = a 2 , S A ⊥ m p A B C , S A = a . Gọi G là trọng tâm tam giác SBC, mặt phẳng (α) đi qua AG và song song với BC cắt SB, SC lần lượt tại M, N. Tính thể tích V của khối chóp S.AMN
A. V = a 3 9
B. V = 2 a 3 27
C. V = 2 a 3 9
D. V = a 3 6
Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, A C = a 2 biết SA vuông góc với mặt đáy, SA = a. Gọi G là trọng tâm của tam giác SBC, α là mặt phẳng đi qua AG và song song với BC cắt SB, SC lần lượt tại M và N. Tính thể tích V của khối đa diện AMNBC.
A. V = 4 9 a 3
B. V = 2 27 a 3
C. V = 5 27 a 3
D. V = 5 54 a 3