Đáp án D
Vì MPNQ là tứ diện đều nên M N ⊥ P Q ⇒ C A ' → ⊥ A B ' → ⇒ C A ' → . A B ' → = 0
⇔ C A → + A A ' → A B → + B B ' → = 0 ⇔ C A → + C C ' → C B → − C A → + C C ' → = 0 ⇔ C C ' 2 − C A 2 = 0 ⇒ C C ' = C A = a . V = C C ' . S A B C = a 3 2
Đáp án D
Vì MPNQ là tứ diện đều nên M N ⊥ P Q ⇒ C A ' → ⊥ A B ' → ⇒ C A ' → . A B ' → = 0
⇔ C A → + A A ' → A B → + B B ' → = 0 ⇔ C A → + C C ' → C B → − C A → + C C ' → = 0 ⇔ C C ' 2 − C A 2 = 0 ⇒ C C ' = C A = a . V = C C ' . S A B C = a 3 2
Cho hình lăng trụ đứng ABC.A’B’C’. Có đáy ABC là tam giác vuông cân tại C vớiCA=CB=a. Trên đường chéo CA’ lấy hai điểm M, N. Trên đường chéo AB’ lấy được hai điểm P, Q sao cho MPNQ tạo thành một tứ diện đều. Tính thể tích khối lăng trụ ABC.A’B’C’.
A. 2 a 3
B. a 3 6
C. a 3
D. a 3 2
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác cân tại C, AA'=a, B A C ^ = 30 0 , A B = a 3 . Gọi M là trung điểm của BB'. Tính theo a thể tích V của khối tứ diện MACC'
A. V = a 3 3 12
B. V = a 3 3 4
C. V = a 3 3 3
D. V = a 3 3 18
Cho hình lăng trụ đứng A B C . A ' B ' C ' có đáy ABC là tam giác vuông tại A. Biết A B = 2 a , A C = a , A A ' = 4 a . Gọi M là điểm thuộc cạnh AA' sao cho M A ' = 3 M A . Tính khoảng cách giữa hai đường thẳng chéo nhau BC và C’M.
A. 6 a 7
B. 8 a 7
C. 4 a 3
D. 4 a 7
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại B, BC=a, mặt phẳng (A'BC) tạo với đáy một góc 30 o và tam giác A'BC có diện tích bằng a 2 3 . Tính thể tích khối lăng trụ ABC.A'B'C'.
A. 3 a 3 3 2
B. 3 a 3 3 8
C. a 3 3 8
D. 3 a 3 3 4
Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại A, AC = a, A C B ^ = 60 ∘ Đường chéo BC’ của mặt bên (BCC’B’) tạo với mặt phẳng (ACC’A’) một góc 30 độ Tính thể tích khối lăng trụ theo a
A. a 3 3
B. a 3 6
C. a 3 3 3
D. a 3 6 3
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông ở A, AB = 2a, AC = a, AA' = 4a. M là điểm thuộc cạnh AA' sao cho MA' = 3MA . Tính khoảng cách giữa hai đường chéo nhau BC và C'M
A. d = 6 a 7
B. d = 8 a 7
C. d = 4 a 3
D. d = 4 a 7
Cho lăng trụ tam giác đều A B C . A ' B ' C ' . Trên A ' B ' kéo dài lấy điểm M sao cho B ' M = 1 2 A ' B . Gọi N, P lần lượt là trung điểm của A ' C ' và B ' B ' . Mặt phàng (MNP) chia khối lăng trụ A B C . A ' B ' C ' thành hai khối đa diện, trong đó khối đa diện chứa đỉnh A ' có thể tích V 1 , khối đa diện chứa đỉnh C ' có thể tích V 2 . Tỉ số V 1 V 2 là:
A. V 1 V 2 = 49 95
B. V 1 V 2 = 49 144
C. V 1 V 2 = 95 144
D. V 1 V 2 = 97 59
Cho khối lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông cân tại A với AB=a, A'B tạo với mặt phẳng (ABC) một góc α . Biết thể tích lăng trụ ABC.A'B'C'là a 3 3 2 . Tính α .
A. α = 70 ∘
B. α = 30 ∘
C. α = 45 ∘
D. α = 60 ∘
Cho khối lăng trụ đứng ABC.A'B'C' có BB' = a, đáy ABC là tam giác vuông cân tại B, AB = a. Tính thể tích V của khối lăng trụ:
A . V = a 3 2
B . V = a 3 6
C . V = a 3 3
D . V = a 3