Một hình hộp chữ nhật có ba kích thước là a, b, c. Gọi (S) là mặt cầu đi qua 8 đỉnh của hình hộp chữ nhật đó. Diện tích của hình cầu (S) theo a, b, c bằng
A. π 2 a 2 + b 2 + c 2
B. 4 π a 2 + b 2 + c 2
C. π a 2 + b 2 + c 2
D. 2 π a 2 + b 2 + c 2
Tính bán kính r của mặt cầu ngoại tiếp hình hộp chữ nhật có ba kích thước là a, b, c.
A. r = 1 3 a 2 + b 2 + c 2
B. r = a 2 + b 2 + c 2
C. r = 1 2 a 2 + b 2 + c 2
D. r = 1 2 a + b + c
Một hình hộp chữ nhật nội tiếp mặt cầu và có ba kích thước là a, b, c. Khi đó bán kính của mặt cầu bằng
A. 1 2 a 2 + b 2 + c 2
B. a 2 + b 2 + c 2 3
C. 2 a 2 + b 2 + c 2
D. a 2 + b 2 + c 2
Cho hình hộp chữ nhật ABCD.A' B' C' D' có các kích thước là AB=2, AD=3, AA'=4. Gọi (N) là hình nón có đỉnh là tâm của mặt ABB' A' và đường tròn đáy là đường tròn ngoại tiếp hình chữ nhật. Thể tích của khối nón (N) là
A. 5 π
B. 13 π 3
C. 8 π
D. 25 π 6
Cho hình hộp chữ nhật ABCD A'B'C'D' có A A ' = a , A B = a , A D = c . Tính bán kính đường tròn là giao tuyến của mặt phẳng A B C D với mặt cầu đi qua 8 đỉnh của hình hộp.
A. 1 2 a 2 + b 2 + c 2
B. 1 2 a 2 + b 2
C. 1 2 b 2 + c 2
D. 1 2 c 2 + a 2
Một hình hộp chữ nhật có ba kích thước là a, b, c nội tiếp một mặt cầu. Khi đó diện tích S m c của mặt cầu đó là
A. S m c = 16 a 2 + b 2 + c 2 π
B. S m c = 8 a 2 + b 2 + c 2 π
C. S m c = 4 a 2 + b 2 + c 2 π
D. S m c = a 2 + b 2 + c 2 π
Cho hình hộp chữ nhật ABCD.A′B′C′D′ có AB=1,BC=2,AA'=3.. Tính sin của góc giữa đường thẳng A′C và mặt phẳng (A′BD).
A. 5 91 49
B. 3 14 49
C. 9 14 98
D. 11 70 98
Một hình hộp chữ nhật có ba kích thước là a, b, c. Thể tích V của khối hộp chữ nhật đó bằng
A.(a+b)c
B. 1 3 a b c
C. abc
D.(a+c)b
Một hình hộp chữ nhật có ba kích thước a , b , c . là V Thể tích của khối hộp chữ nhật đó bằng
A. a + c b .
B. a b c .
C. a + b c .
D. 1 3 a b c .