a: Sửa MN\(\perp\)CD tại N
Xét tứ giác AMND có
\(\widehat{MND}=\widehat{MAD}=\widehat{ADN}=90^0\)
=>AMND là hình chữ nhật
b: Xét tứ giác ADBK có
M là trung điểm chung của AB và DK
=>ADBK là hình bình hành
=>AK=BD
mà BD=AC(ABCD là hình chữ nhật)
nên AK=AC
=>ΔAKC cân tại A
c: Xét ΔMAI có IE là phân giác
nên \(\dfrac{ME}{EA}=\dfrac{MI}{IA}=\dfrac{MI}{IK}\left(1\right)\)
Xét ΔIMK có IF là phân giác
nên \(\dfrac{MF}{FK}=\dfrac{IM}{IK}\left(2\right)\)
Từ (1),(2) suy ra \(\dfrac{ME}{EA}=\dfrac{MF}{FK}\)
Xét ΔMAK có \(\dfrac{ME}{EA}=\dfrac{MF}{FK}\)
nên EF//AK
mà AK//BD(AKBD là hình bình hành)
nên EF//BD