Cho đường tròn tâm O bán kính R có đường kính AB cố định. Vẽ đường kính MN của đường tròn tâm O bán kính R (M khác A ,M khác B). Tiếp tuyến của dường tròn tâm o bán kính r tại B cắt đường thẳng AM AN lần lượt tại Q và P
a, Cm tg AMNB Là hình chữ nhật
b, chứng minh 4 điểm M, N, P, Q cùng thuộc 1 đường tròn
Tam giác ABC nhọn (AB < AC)
Kẻ các đoạn BE, CF cắt nhau tại H
a. Chứng minh 4 điểm B, C, E, F thuộc 1 đường tròn, xác định tâm và bán kính đường tròn đó
b. Chứng minh 4 điểm A, F, H, E thuộc 1 đường tròn, xác định tâm và bán kính đường tròn đó
c. Chứng minh AF.AB = AE.AC và góc AFE = góc ACB
d. Kéo dài AH cắt BC tại M. Chứng minh AM vuông BC
e. Chứng minh 4 điểm M, H, E, C và 4 điểm M, H, F, B cùng 1 đường tròn
Bài 1 : Cho hình vuông ABCD có cạnh bằng 3 cm . Chứng minh rằng : 4 đỉnh của hình vuông ABCD cùng nằm trên 1 đường tròn . Hãy tính bán kính đường tròn đó
Bài 2 : Cho tam giác nhọn ABC . Vẽ đường tròn tâm O , bán kính BC , nó cắt các cạnh AB, AC theo thứ tự ở D và E
a)CMR: CD vuông góc với AB , BE vuông góc với AC
b) gọi K là giao điểm của BE và CD. Chứng minh AK vuông góc BC
Bài 3:Cho hình thang ABCD , AB//CD, AB<CD , có góc C=góc D=60 độ , CD=2AD . Chứng minh 4 điểm A, B, C, D cùng thuộc 1 đường tròn. Tính diện tích đường tròn đó biết CD=4cm
Bài 4:Cho tam giác ABC vuông tại A. Trên AB, AC lần lượt lấy các điểm D, E . Gọi M, N, P, Q lần lượt là trung điểm của DE , EB, BC, CD. Chứng minh 4 điểm M, N, P, Q cùng thuộc 1 đường tròn
Bài 5 (1 điểm): Cho tam giác MNP vuông tại M, có MN = 6 cm, MP = 8 cm. Chứng minh rằng các
đỉnh M, N, P cùng thuộc một đường tròn. Hãy xác định tâm và tính độ dài bán kính của đường tròn
đó.
Cho hình chữ Nhật ABCD, ABCD=12cm, BC=9cm. Chứng minh rằng các điểm A, B, C, D cùng thuộc một đường tròn. Xác định tâm và bán kính đường tròn đó
Cho hình chữ Nhật ABCD, ab=12cm, bc=9cm chứng minh rằng các điểm A,b, C , D cùng thuộc một đường tròn. Xác định tâm và bán kính đường tròn đó
bài 1: cho đường tròn tâm /o bán kính 2cm. Góc SOB =60.
a) tính sđ cung AmB
b) tính độ dài hai cung AnB và AmB, độ dài đường tròn tâm O
c) tính diện tích hình tròn, diện tích hình quạt tròn OAnB.
bài 2: cho tam giác ABC có 3 góc nhọn. Đừng tròn tâm O đường kính BC cắt AB, AC lần lượt tại I và K. BK và CI cắt nhua tại H. Tia AH cắt BC tại M.
a) chứng minh \(AM\perp BC\)
b) chứng minh tứ giác BIHM, CMHK, AKMB nội tiếp. xác định tâm đường tròn ngoại tiếp
Cho đường tròn (O) có bán kính R = 2a và điểm A nằm ngoài đường tròn (O). Kẻ đến (O) hai tiếp tuyến AM và AN (với M, N là các tiếp điểm)
a) Chứng minh bốn điểm A,M,N,O cùng thuộc một đường tròn (C). Xác định tâm và bán kính của đường tròn (C).
b) Tính diện tích S của tứ giác AMON theo a, biết OA = 3a
c) Gọi M' là điểm đối xứng của M qua O và P là giao điểm của AO vào (O), P nằm ngoài đoạn OA. Tính sin góc MPN
câu 1: cho ΔABC có ba góc nhọn dường tròn (o) đường kính BC cắt AB,AC lần lượt tại M,N
a.chứng minh: góc BMC=90 độ
b. gọi H là giao điểm CM và BN chứng minh bốn điểm A,N,H,M cùng thuộc 1 đường tròn, xác định tâm I của đường tròn này.
c. chứng minh I M là tiếp tuyến của đường tròn (o)
Cho đường tròn tâm O đường kính BC, A là một điểm thuộc đường tròn. H là hình chiếu của A trên BC. Vẽ đường tròn (I) có đường kính AH, cắt AB và AC theo thứ tự ở M và N.
a) Chứng minh rằng OA vuông góc với MN.
b) Vẽ đường kính AOK của đường tròn (O). Gọi E là trung điểm của HK. Chứng minh rằng E là tâm của đường tròn ngoại tiếp tứ giác BMNC.
c) Cho BC cố định. Xác định vị trí của điểm A để bán kính của đường tròn ngoại tiếp tứ giác BMNC lớn nhất.