1: Xét ΔHAB có
E là trung điểm của HA
F là trung điểm của HB
Do đó: EF là đường trung bình
=>EF//AB và EF=AB/2
hay EF//CD và EF=CD/2
mà G là trung điểm của CD
nên EF=CG và EF//CG
=>EFCG là hình bình hành
1: Xét ΔHAB có
E là trung điểm của HA
F là trung điểm của HB
Do đó: EF là đường trung bình
=>EF//AB và EF=AB/2
hay EF//CD và EF=CD/2
mà G là trung điểm của CD
nên EF=CG và EF//CG
=>EFCG là hình bình hành
Cho tam giác ABC. Qua B kẻ đường thẳng vuông góc vs đường chéo AC tại H. Gọi E,F,G,H lần lượt là trung điểm của AH,BH,CD.
a)CM: tứ giác EFCG là hình ình hành.
b) Cho BH=h, góc BAC=\(\alpha\). Tính đường chéo AC theo h và \(\alpha\)
cho tam giác ABC vuông tại A; đg cao AH. Dvà E lần lượt là hình chiếu của H trên AB và AC cm rằng
a) AD*AB=AH bình phương
AD*AB=AE*AC
b)gọi I là trung điểm của BC cm AI vuông góc vs DE
c)M là trung điểm của BH;N là trung điểm của CH. nhận dạng tứ giác MDEN
d)gọi O là giao điểm của AH và DE . tính tỷ số DIỆN TÍCH TAM GIÁC OMN TRÊN DIỆN TÍCH TAM GIÁC ABC
- Cho ▲ABC vuông tại A, đường cao AH. Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Biết BH = 4 cm, CH = 9 cm.
a. Tính độ dài DE
b. Chứng minh AD x AB = AE x AC
c. Các đường thẳng vuông góc với DE tại D và E cắt DC tại M và N. Chứng minh M và N lần lượt là trung điểm của BH và CH.
d. Tính diện tích tứ giác DEMN.
- Giúp nhanh nha, chiều phải học rồi T^T
cho tam giác ABC vuông ở A, đường cao AH chia cạnh huyền BC thành 2 đoạn có độ dài BH=4cm, CH=9cm. D, E là hình chiếu của H trên AB, AC.
a, tính DE
b, các đường vuông góc với DE tại D và E cắt BC tại M và N .CM: M là trung điểm BH, N là trung điểm CH
c, tính diện tính tứ giác DENM
Bài 1 : Cho tam giác ABC nhọn nội tiếp ( O ; R ) , H là trực tâm tam giác ABC . Vẽ đường kính AD của ( O ; R ) . Chứng minh :
a, BH // DC
b, tứ giác BHCD là hình bình hành
c, Gọi giao điểm của BH và AC là E , góc BAC = 60* , góc ACB = 45* , AC = 5 cm . Tính diện tích tam giác ABC
Bài 2 : Cho ( O;R ) dây AB không qua tâm . Vẽ dây AC vuông góc với dây AB tại A , C thuộc ( O ) . Chứng minh :
a, B , O , C thẳng hàng
b, diện tích tâm giác ABC nhỏ hơn hoặc bằng \(R^2\)
Cho tứ giác ABCD có 2 đg chéo cắt nhau tại O và góc COD =\(\alpha\left(\alpha< 90độ\right)\) . Gọi H,K lần lượt là trực tâm của tam giác AOB,COD . Gọi E,G,I lầng lượt là trọng tâm tam giác ABO,BCO,ADO . Biết AH cắt DK tại F
a. c/m : EG//AC và \(\frac{EG}{EI}=\frac{AB}{BD}\)
b. \(FK=AC.\cot\alpha\)
c. tam giác AEG đồng dạng với tam giác HFK
Cho hình chữ nhật ABCD có AB=5cm , BC=12cm. Vẽ BH vuông góc vói AC tại H và kéo dài cắt AD tại K.
a) Giải tam giác ABC
b) Đường phân giác của góc ABC cắt AC tại M. Tính BM
c) Chứng minh AH . AC = BK . BH
Cho tam giác ABC vuông tại A. Đường cao AH. Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Biết BH=4cm,HC=9cm.
a)Chứng minh tứ giác ADHE là hình chữ nhật
b)tính DE=?cm
c)Chứng minh AD.AB=AC.AE
Vẽ hình và chứng minh hộ mình nhé mình nhé mình ấn đúng cho
Giúp đỡ mình nhé các bạn
Cho tam giác ABC vuông tại A. Đường cao AH. Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Biết BH=4cm,HC=9cm.
a)Chứng minh tứ giác ADHE là hình chữ nhật
b)tính DE=?cm
c)Chứng minh AD.AB=AC.AE
Vẽ hình và chứng minh hộ mình nhé mình nhé mình ấn đúng cho
Giúp đỡ mình nhé các bạn