a: Xét ΔABC có AH/AB=AO/AC
nên OH//BC và OH/BC=AH/AB=1/2
b: OH//BC
=>OH//AK
OH=BC/2
=>OH=AD/2=AK
Xét tứ giác AHOK có
OH//AK
OH=AK
góc HAK=90 độ
=>AHOK là hình chữ nhật
a: Xét ΔABC có AH/AB=AO/AC
nên OH//BC và OH/BC=AH/AB=1/2
b: OH//BC
=>OH//AK
OH=BC/2
=>OH=AD/2=AK
Xét tứ giác AHOK có
OH//AK
OH=AK
góc HAK=90 độ
=>AHOK là hình chữ nhật
Cho hình chữ nhật ABCD ,O là giao điểm 2 đường chéo .Qua I thuộc OA , kẻ đường thẳng song song với BD cắt AD,AB tại E và F
a) CHỨNG MINH IE=IF
b)GỌI K,M LẦN LƯỢT LÀ TRUNG ĐIỂM CỦA BE VÀ DF .CHỨNG MINH TỨ GIÁC IKOM LÀ HÌNH CHỮ NHẬT
Bài 2: Cho hình chữ nhật ABCD, gọi M và N lần lượt là trung điểm của AB, CD. Gọi E là giao điểm của AN và DM, gọi F là giao điểm của BN và CM.
a/ chứng minh tứ giác AMND, BMNC là hình chữ nhật.
b/ chứng minh tứ giác EMFN là hình thoi.
c/ AC cắt DM, MN, BN lần lượt tại H, O, K. Chứng minh AH=HK=KC,
d/ Chứng minh E, O, F thẳng hàng.
Cho hình thoi ABCD, gọi O là giao điểm của hai đường chéo. Vẽ đường thẳng qua và song với AC, vẽ đường thẳng qua C và song song với BD, hai đường chéo này cắt nhau tại K a) Chứng minh rằng tứ giác OBKC là hình chữ nhật b) Chứng minh tứ giác ABKO là hình bình hành c) Tìm điều kiện về hai đường chéo của hình thoi ABCD để tứ giác OBKC kà hình vuông
cho hình thoi ABCD, gọi O là giao điểm của 2 đường chéo. vẽ BM//AC,CM//BD
a) chứng minh tứ giác OBMC là hình chữ nhật
b) chứng minh AB=OM
Cho hình chữ nhật ABCD có O là giao điểm của hai đường chéo . Lấy một điểm E nằm giữa hai điểm O và B. Gọi F là điểm đối xứng với điểm A qua E và I là trung điểm của CF.
a) Chứng minh tứ giác OEFC là hình thang và tứ giác OEIC là hình bình hành.
b) Gọi H và K lần lượt là hình chiếu của F trên các đường thẳng BC và CD. Chứng minh tứ giác CHFK là hình chữ nhật.
c) Chứng minh bốn điểm E, H, K, I thẳng hàng.
Cho hình chữ nhật ABCD có O là giao điểm của hai đường chéo. Lấy một điểm E nằm giữa hai điểm O và B. gỌI F là điểm đối xứng với điểm A qua E và I là trung điểm của CF
a, Chứng minh tứ giác OEFC là hinh thang và tứ giác OEIC là hình bình hành .
b, Gọi H và K lần lượt là hình chiếu của F trên các đường thẳng BC và CD. Chứng Minh tứ giác CHFK là hình chữ nhật
c,Chứng minh bốn điểm E,H,K,I thẳng hàng
Cho tứ giác ABCD. Gọi O là giao điểm của hai đường chéo . Gọi M và N theo thứ tự là điểm đối xứng của O qua I và K lần lượt là trung điểm
a, chứng minh tứ giác BMND là hình bình hành
b, với điều kiện nào của hai đường chéo AC và BD thì tứ giác BMND là hình chữ nhật
c,chứng minh ba điểm M,C,N thẳng hàng
Cho hình chữ nhật ABCD. O là giao điểm hai đường chéo và một điểm P bất kì trên đường chéo BD (P nằm giữa O và D). Gọi M là điểm đối xứng của C qua P. a) Chứng minh tứ giác AMDB là hình thang. Xác định vị trí của P trên BD để AMDB là hình thang cân. b) Kẻ ME vuông góc AD, MF vuông góc BA. Chứng minh EF // AC và 3 điểm E, F, P thẳng hàng. c) Xác định vị trí P trên BD để tứ giác nối 4 điểm A, M, D, B là hình thang cân. d) Nếu hình chữ nhật ABCD có AB = 2BC. Gọi K là điểm trên AB sao cho góc ADK = $15^o$. Chứng minh tam giác CDK cân.
cho tứ giác abcd. gọi m, n, p, q lần lượt là trung điểm của các cạnh ab, bc, cd, da và i, k là trung điểm các đường chéo ac, bd. chứng minh rằng:
a) tứ giác mnpq, inkq là hình bình hành.
b) gọi o là giao điểm của mp, nq. chứng minh 3 điểm i, o, k thẳng hàng
các bạn giúp mình với ạ, mình cảm ơn rất nhiều!