Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngô Hải Nam

Cho hình chữ nhật ABCD. Gọi O là giao điểm của hai đường chéo. Lấy M tùy ý trên CD, OM cắt AB tại N.

a) Chứng minh: M và N đối xứng nhau qua Q.

b) Kẻ NF//AC (F ∈ BC), ME//AC (E ∈ AD) Chứng minh NFME là hình bình hành

c) Chứng minh: MN, EF, AC, BD đồng quy.

 

Nguyễn Lê Phước Thịnh
18 tháng 12 2022 lúc 22:10

a: Xét ΔOAN và ΔOCM có

góc AON=góc COM

OA=OC

góc OAN=góc OCM

DO đó: ΔOAN=ΔOCM

=>ON=OM

=>O là trung điểm của MN

b: Xét ΔBAC co NF//AC

nên NF/AC=BN/BA=DM/DC

Xét ΔDAC có EM//AC

nên EM/AC=DM/DC=NF/AC

=>EM=NF

mà EM=NF

nên EMFN là hình bình hành

c: Vì EMFN là hình bình hành

nen EF cắt MN tại trung điểm của mỗi đường

=>O là trung điểm của EF

=>MN,EF,AC,BD đồng quy

(っ◔◡◔)っ ♥ Aurora ♥
18 tháng 12 2022 lúc 22:31

a, Có: hcn ABCD (gt)

=> AB // CD ( t/c )

     O là trung điểm AC ( t/c ) => OA = OC.

Có: AB // CD ( cmt )

=> AN // MC

=> \(\widehat{NAO}=\widehat{MCO}\left(SLT\right)\)

Xét △ANO và △CMO có:

\(\widehat{NAO}=\widehat{MCO}\left(cmt\right)\)

OA = OC ( cmt )

\(\widehat{AON}=\widehat{COM}\left(đ^2\right)\)

=> △ANO = △CMO ( g.c.g )

=> ON = OM ( 2 cạnh tương ứng )

=> O là trung điểm MN 

=> M và N đối xứng nhau qua O.

b, Có: NF // AC ( gt )

          ME // AC ( gt )

=> NF // ME

=> \(\widehat{EMN}=\widehat{FNM}\left(SLT\right)\)

Có: △ANO = △CMO ( cmt )

=> \(\widehat{ENM}=\widehat{FMN}\left(2gtu\right)\)

Xét △ENM và △FMN có:

\(\widehat{ENM}=\widehat{FMN}\left(cmt\right)\)

MN chung

\(\widehat{EMN}=\widehat{FNM}\left(cmt\right)\)

=> △ENM = △FMN (g.c.g)

=> EM = FN ( 2ctu )

Mà EM // FN ( cmt ) 

=> ENFM là hbh ( dhnb )

Câu cuối không biết làm=)))


Các câu hỏi tương tự
Huỳnh Diệu Bảo
Xem chi tiết
阮草~๖ۣۜDαɾƙ
Xem chi tiết
trịnh thị hiền lương
Xem chi tiết
mun dieu da
Xem chi tiết
Pox Pox
Xem chi tiết
Pox Pox
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Tử La Lan
Xem chi tiết
Đoàn Phương Linh
Xem chi tiết