Cho hình chữ nhật ABCD, AD<AB, đường thẳng vuông góc với AC tại C cắt AD, AB lần lượt tại M và N. Gọi E là trung điểm của MC. Kẻ Ch vuông góc với BD tại H, BE cắt CH tại K. Chứng minh K là trung điểm của HC.
Cho hình chữ nhật ABCD có AB = 8cm; BC = 6cm. Kẻ BH vuông góc với AC tại H, DM vuông góc với AC tại M.
a) Chứng minh ∆ABH đồng dạng với ∆ACB và suy ra AC.AH = AB^2.
b) Tính độ dài các đoạn thẳng AC, BH, CH.
c) Gọi I là điểm đối xứng với B qua AC. Chứng minh DM = IH và ACID là hình thang cân.
d) Gọi E, F lần lượt là trung điểm của AH, CD và K là giao điểm của BF với AC. Chứng minh rằng BF.EK ≥ BE.EF.
Cho hình chữ nhật ABCD có AB=2AD. Gọi I và K lần lượt là trung điểm của AB, CD
a) Chứng minh các tứ giác AIKD, IBCK là hình vuông.
b)Gọi M và N lần lượt là giao điểm của 2 đường chéo của hình vuông AIKD và IBCK . Chứng minh IK vuông góc với MN và IK=MN
Cho hình chữ nhật ABCD có AD = 6cm , AB = 8cm , hai đường chéo AC và BD cắt nhau tại O . Qua D kẻ đường thẳng d vuông góc với BD , d cắt tia BC tại E
a, Kẻ CH vuông góc với DE tại H , gọi K là giao điểm của OE và HC . Chứng minh rằng K là trung điểm của HC và tính tỉ số diện tích của tam giác EHC và diện tích EDB
b, Chứng minh rằng : Ba đường thẳng OE , CD , BH đồng quy
Bài 1 (4đ). Cho tứ giác ABCD có AB//CD. Gọi M, N lần lượt là trung điểm của AC và BD. Gọi O là giao điểm của hai đường thẳng theo thứ tự đi qua M và N tương ứng vuông góc với BC và AD.
a) Chứng minh rằng MN//CD.
b) Chứng minh rằng OC = OD.
Cho hình chữ nhật ABCD có M là trung điểm DC. Từ M vẽ đường thẳng vuông góc với DC cắt AB tại N. Gọi E, F lần lượt là trung điểm của AD,BC. Vẽ CH vuông góc bd tại H. I đối xứng với A qua H và J đối xứng với A qua DC. Chứng minh I,J,C thẳng hàng
Cho hình chữ nhật ABCD. Gọi H là chân đường vuông góc kẻ từ A đến BD. Gọi M và N theo thứ tự là đường trung điểm của AH và DH. a, Chứng minh MN // AD b, gọi I là trung điểm của BC chứng minh góc BMNI là hình bình hành
Cho hình chữ nhật ABCD cóa AB=2AD. Vẽ BH vuông góc với AC. Gọi M,N,P lần lượt là trung điểm của AH, BH, CD
a, chứng minh MNCP là hbh
b, Chứng mình MP vuông góc MB
c, Gọi I là trung điểm của BP và J là giao điểm của MC và NP. Chứng minh MI- IJ < IP
Cho hình chữ nhật ABCD có M là trung điểm của DC. Từ M vẽ đường thẳng vuông góc với DC cắt AB tại N. Gọi E, F lần lượt là trung điểm của AD, BC. Vẽ CH vuông góc với BD tại H. J đối xứng với A qua H và I đối xứng với A qua DC. Chứng minh I, J, C thẳng hàng