Cho hình chữ nhật ABCD có AB=2AD.Gọi M là trung điểm của AB, E là hình chiếu vuông góc của C trên BD , F là hình chiếu vuông góc của D trên AC.
a) Chứng minh C,D,E,F,M cùng thuộc một đường tròn.
b) Tứ giác ABEF là hình gì ? Hỏi có đường tròn nào đi qua bốn điểm A,B,E,F ko?
Cho nửa đường tròn (O) đường kính BC và 1 điểm A nằm trên đường tròn sao cho AB<AC . H là hình chiếu của A trên BC . Đường trtròn tâm H bán kính HA cắt AB tại D(D≠A) và cất AC tại E (E≠A) . Gọi K là hình chiếu của H lên AC và I là giao điểm của HK và AO . CMR
a) EI//BC
b) BECD nội tiếp
c) Khi A thay đổi trên (O) tâm của đt ngoại tiếp tứ giác BECD thuộc một đường tròn cố định
Bài 1 : Cho hình vuông ABCD có cạnh bằng 3 cm . Chứng minh rằng : 4 đỉnh của hình vuông ABCD cùng nằm trên 1 đường tròn . Hãy tính bán kính đường tròn đó
Bài 2 : Cho tam giác nhọn ABC . Vẽ đường tròn tâm O , bán kính BC , nó cắt các cạnh AB, AC theo thứ tự ở D và E
a)CMR: CD vuông góc với AB , BE vuông góc với AC
b) gọi K là giao điểm của BE và CD. Chứng minh AK vuông góc BC
Bài 3:Cho hình thang ABCD , AB//CD, AB<CD , có góc C=góc D=60 độ , CD=2AD . Chứng minh 4 điểm A, B, C, D cùng thuộc 1 đường tròn. Tính diện tích đường tròn đó biết CD=4cm
Bài 4:Cho tam giác ABC vuông tại A. Trên AB, AC lần lượt lấy các điểm D, E . Gọi M, N, P, Q lần lượt là trung điểm của DE , EB, BC, CD. Chứng minh 4 điểm M, N, P, Q cùng thuộc 1 đường tròn
Bài 1:
a/ Cho hình vuông ABCD có cạnh 5cm. Chứng minh rằng: A, B, C, D cùng nằm trên một đường tròn, tính bán kính.
b/ Cho hình chữ nhật ABDE có AB = 8, BD = 6. Chứng minh rằng: A, B, D, E cùng nằm trên một đường tròn, tính bán kính.
Bài 2: Cho tam giác ABC, vẽ đường tròn tâm O đường kính BC. (O) cắt AB, AC lần lượt tại D và E, BE giao CD tại K.
a/ CMR: CD ^ AB, BE ^ AC.
b/ CMR: AK ^ BC.
Bài 3: Cho tam giác ABC vuông ở B, AB = 8cm, BC = 6cm. Gọi D là điểm đối xứng của điểm B qua AC.
a. CMR: 4 điểm A, B, C, D cùng thuộc một đường tròn. Tính bán kính của đường tròn đó.
b. Vẽ đường kính BE của đường tròn ngoại tiếp tam giác ABC. Chứng minh tứ giác ACDE là hinh thang cân.
Cho nửa đường tròn (O) đường kính AB. Điểm C thuộc (O) sao cho CA < CB. Vói H là hình chiếu vuông góc của C trên AB, gọi D, M, N theo thứ tự là giao của đường tròn I đường kính CH với (O), AC và BC
a, Tứ giác CMHN là hình gì?
b, Chứng minh OC ⊥ MN
c, Với E = AB ∩ CD, chứng minh các điểm E, I, M và N thẳng hàng
d, Chứng minh ED.EC = EA.EB
Cho (O) đường kính ab và c thuộc (o) sao cho ca>cb. Từ C vẽ d là tiếp tuyến của đường tròn (o). Gọi D, E lần lượt là hình chiếu vuông góc của A, B lên đường thẳng d a) cmr: C là trung điểm DE b) cmr: Tam giác ACB vuông c) cmr: BC là phân giác của góc ABE d) cmr: AB là tiếp tuyến của đường tròn đường kính DE
cho nửa đường tròn O, đường kính AB. lấy C thuộc O với CA > CB. Hạ CH vuông góc với AB. Đường tròn (K) giao với CA, CB lần lượt tại D và E và giao với O tại F.
a) C/m: CDHE là hình chữ nhật và tứ giác ABED nội tiếp.
b) Đường CF giao với AB tại Q. C/m K là trực tâm tam giác OCQ.
c) Chứng minh D, E, F thẳng hàng
1. cho nữa đường tròn tâm O bán kính R có đường kính AB và bán kính AC vuông góc AB, điểm M di động trên cung AC, điểm H là hình chiếu của M lên OC. xác dịnh vị trí của M để MA + MH lớn nhất
2. cho (o;r) có đường kính AB, đường trung trực của AO cắt đường tròn ở C và D.
a. tứ giác ACOD là hình j
b. tam giác BCD là tam giác j
c. tính chu vi và diện tích tam giác BCD
3. tam giác ABC nhọn nội tiếp đường tròn O; AB là 1 đường kính của đường tròn. H là trực tâm của tam giác ABC.
a. CM: tứ giác BHCD là hình bình hành
b. CM: HA + HB + HC = 2( OM + ON + OK) trong đó M, N, K là hình chiếu của O lên 3 cạnh của tam giác ABCgiúp với1. cho nữa đường tròn tâm O bán kính R có đường kính AB và bán kính AC vuông góc AB, điểm M di động trên cung AC, điểm H là hình chiếu của M lên OC. xác dịnh vị trí của M để MA + MH lớn nhất
2. cho (o;r) có đường kính AB, đường trung trực của AO cắt đường tròn ở C và D.
a. tứ giác ACOD là hình j
b. tam giác BCD là tam giác j
c. tính chu vi và diện tích tam giác BCD
3. tam giác ABC nhọn nội tiếp đường tròn O; AB là 1 đường kính của đường tròn. H là trực tâm của tam giác ABC.
a. CM: tứ giác BHCD là hình bình hành
b. CM: HA + HB + HC = 2( OM + ON + OK) trong đó M, N, K là hình chiếu của O lên 3 cạnh của tam giác ABCgiúp với
Cho đường tròn(O) đường kính AB . Cho điểm C thuộc đường tròn Từ C kẻ CH vuông góc với AB (C khác A,B) Đường tròn tâm C bán kính CH cắt(O) tại D và E (D thuộc cung AC) giao điểm của DE với CH, CA, CA lần lượt là N, I, K.
Chứng minh:
1. tam giác ADC đồng dạng với tam giác CID( xong)
2. Chứng minh IH vuông góc với AC ( làm giúp mình câu này với)
3.N là trung điểm của DE