a: Xét ΔADH vuông tại H và ΔDBC vuông tại C có
\(\widehat{ADH}=\widehat{DBC}\)
Do đó: ΔADH∼ΔDBC
Xét ΔABD vuông tại A có AH là đường cao
nên \(AD^2=HD\cdot BD\)
b: \(BD=\sqrt{12^2+9^2}=15\left(cm\right)\)
\(HD=\dfrac{AD^2}{BD}=\dfrac{9^2}{15}=5.4\left(cm\right)\)
=>HB=9,6(cm)