Một hình thang vuông ABCD có đường cao A D = π , đáy nhỏ A B = π , đáy lớn C D = 2 π . Cho hình thang đó quay quanh CD, ta được vật tròn xoay có thể tích bằng:
A. 4 3 π 4
B. 7 3 π 4
C. 10 3 π 4
D. 13 3 π 4
Cho hình trụ (T)có bán kính bằng 4 cm mặt phẳng (P) cắt hai đáy của hình trụ theo hai dây AB và CD, AB = CD = 5 cm. Tứ giác ABCD là hình chữ nhật AD và BC không là đường sinh,góc giữa mp (P) và mặt phẳng chứa đáy của hình trụ bằng 60 ° . Thể tích của khối trụ là:
A. 60 π 3 cm 3
B. 24 π 13 cm 3
C. 16 π 13 cm 3
D. 48 π 13 cm 3
Cho hình chữ nhật ABCD có tỉ lệ hai cạnh A B : A D = 2 : 3 . Khi quay hình chữ nhật xung quanh cạnh AB ta thu được hình trụ có thể tích V 1 , khi quay hình chữ nhật quanh cạnh AD ta thu được hình trụ có thể tích V 2 . Tính tỉ số thể tích V 1 V 2 .
A. 3 2 .
B. 2 3 .
C. 2 5 .
D. 3 5 .
Cho hình chữ nhật ABCD có AB = 2 , AD = 4 . Tính thể tích V của khối trụ tạo thành khi quay hình chữ nhật ABCD quanh trục CD
A. 24 π
B. 32 π 3
C. 32 π
D. 16 π
Trong không gian cho ABCD là hình chữ nhật, AB=2, AD=1. Đường thẳng d nằm trong mặt phẳng (ABCD) không có điểm chung với hình chữ nhật ABCD, song song với cạnh AB và cách AB một khoảng bằng a. Gọi V là thể tích của khối tròn xoay T, nhận được khi quay hình chữ nhật ABCD xung quanh trục d. Cho biết d ( A B , d ) < d ( C D , d ) . Tính a biết rằng thể tích khối T gấp 3 lần thể tích của khối cầu có đường kính AB.
A. a = 3
B. a = - 1 + 2
C. a = 1 2
D. a = 15 2
Trong không gian, cho hình chữ nhật ABCD có AB = 2, AD = 3. Đường thẳng d nằm trong mặt phẳng (ABCD), không có điểm chung với ABCD, song song với cạnh AB và cách AB một khoảng bằng 1. Tính thể tích V của khối tròn xoay, nhận được khi quay hình chữ nhật ABCD quanh trục d.
A. V = 17 π
B. V = 5 π
C. V = 15 π
D. V = 30 π
Cho hai điểm A, B thuộc đồ thị hàm số y = sinx trên đoạn [0;π], các điểm C, D thuộc trục Ox thỏa mãn ABCD là hình chữ nhật và CD = 2 π /3. Độ dài của cạnh BC bằng
A. 2 2
B. 1 2
C. 1
D. 3 2
Cho một tấm nhôm hình chữ nhật ABCD có AD = 60 cm. Ta gập tấm nhôm theo hai cạnh MN và PQ vào phía trong đến khi AB và DC trùng nhau, với AN = PD (như hình vẽ dưới đây) để được một hình lăng trụ. Tìm độ dài đoạn AN để thể tích khối lăng trụ lớn nhất.
A. AN = 39 cm
B. AN = 20 cm
C. AN = 15 2 cm
D. AN = 15 cm
Cho hình chữ nhật ABCD có chiều dài A B = 2 A D . Quay hình chữ nhật quay quanh cạnh AB sinh ra khối trụ có thể tích V 1 và quay hình chữ nhật đó quanh cạnh AD sinh ra hình
trụ có thể tích V 2 . Tỉ số V 1 V 2 là
A. 27 π 2 .
B. 1 2 .
C. π 2 .
D. 27