a, xét tam giác AMB và tam giác ABC có :
góc AMB = góc ABC = 90 do...
góc BAC chung
=> tam giác AMB ~ tam giác ABC (g - g)
a, xét tam giác AMB và tam giác ABC có :
góc AMB = góc ABC = 90 do...
góc BAC chung
=> tam giác AMB ~ tam giác ABC (g - g)
Cho hình chữ nhật ABCD (AD <AB) . Hai đường chéo AC và BD cắt nhau tại O. Qua D kẻ đường thẳng vuông góc với BD cắt tia BC tại E .
a) Chứng minh tam giác BDE đồng dạng với tam giácDCE .
b) Kẻ CH vuông góc với DE tại H . Chứng minh rằng: 2 . DC CH DB = . Từ đó tính
độ dài CH biết AD = 6cm ; AB = 8cm.
c) Gọi K là giao điểm của OE và HC . Chứng minh:
HK /OD=EK/EO, từ đó suy ra: K là trung điểm của HC .
d) Chứng minh ba đường thẳng ,, OE. CD .BH đồng quy
Cho tam giác ABC vuông tại A. Đường phân giác góc B cắt AC tại D, cho AB= 6cm, BC= 10cm
a) Tính AC, AD, CD
b) Từ D kẻ đường thẳng vuông góc với AC cắt BC tại K. Qua K kẻ đường thẳng vuông góc với BD tại E và cắt AB, AC lần lượt tại F,H. Chứng minh tam giác ABC đồng dạng tam giác DHK
C) Chứng minh BFDK: hình thoi
Cho hình chữ nhật ABCD, kẻ H vuông góc với BD(H thuộc BD)
a) Chứng minh: tam giác HAD đồng dạng với tam giác ABD
b) Chứng minh:BC2=DB.HD
c) Tia phân giác của góc ADB cắt AH và AB lần lượt tại M và K. Chứng minh: AK.AM=BK.HM
d) Gọi O là giao điểm của AD và BD. Lấy P thuộc AC, Dựng hình chữ nhật AEPF ( E thuộc AB, F thuộc AD). B cắt DE tại Q. Chứng minh EF//DB và 3 điểm A,Q,O thảng hàng
(Mọi người không cần chứng minh câu a, b nha chỉ cần chứng minh câu c, d, e thôi ạ) Cho hình chữ nhật ABCD có AB>AD, AH vuông góc với BD tại H. Tia AH cắt CD và BC lần lượt tại I và K
a) C/m tam giác AHB đồng dạng với tam giác BCD
b) C/m BC.BK=BH.BD
c) C/m góc BHC bằng góc BKD
d) C/m HA^2 = HI.HK
e) C/m S hình chữ nhật ABCD=DI.BK
BÀI NÀY CÓ TRONG KTRA NÊN MỌI NGƯỜI GIÚP MÌNH GẤP VỚI XIN CẢM ƠN RẤT NHIỀU Ạ !
cho hình vuông ABCD. Gọi M là trung điểm của AD, kẻ AI vuông góc với MB tại I.
a) chứng minh tam giác AMB và IMA đồng dạng
b) gọi O là giao điểm của AC và BD. Chứng minh OC.BD = BC.DC
c) BM cắt AC tại K ; AI cắt BD tại H. chúng minh BH - 2DH
Cho hình bình hành ABCD , AC là đường chéo lớn . Kẻ CE vuông góc với AB tại E , CF vuông góc với AD tại F , BI vuông góc với AC tại I
a, chứng minh tam giác AIB đồng dạng với tam giác AEC
b, chưng minh tam giác AIE đồng dạng với tam giác ABC
c, chứng minh AB . AE + AF . CB = AC2
d, tia BI cắt đường thẳng CD tại Q và căt cạnh AD tại K . chứng minh BI2 = IK . IQ
Cho hình chữ nhật ABCD có AD = 6 cm , AB = 8 cm , hai đường chéo AC và BD cắt nhau tại O , Qua D kẻ đường thẳng d vuông góc với BD , d cắt tia BC tại E
a) Chứng minh rằng tam giác BDE đồng dạng với tam giác DCE
b) Kẻ CH vuông góc CE tại H , chứng minh rằng : DC^2 = CH * DB
c) Gọi K là giao điểm của OE và HC . Chứng minh rằng K là trung điểm của HC , và tính tỉ số diện tích của tam giác EHC và tam giác EDB
d) Chứng minh rằng ba đường thẳng OE , CD , BH đồng quy
Cho hình chữ nhật ABCD có AD = 6 cm , AB = 8 cm , hai đường chéo AC và BD cắt nhau tại O , Qua D kẻ đường thẳng d vuông góc với BD , d cắt tia BC tại E
a) Chứng minh rằng tam giác BDE đồng dạng với tam giác DCE
b) Kẻ CH vuông góc CE tại H , chứng minh rằng : DC^2 = CH * DB
c) Gọi K là giao điểm của OE và HC . Chứng minh rằng K là trung điểm của HC , và tính tỉ số diện tích của tam giác EHC và tam giác EDB
d) Chứng minh rằng ba đường thẳng OE , CD , BH đồng quy
Bài 4. Cho tam giác ABC với trực tâm H, trọng tâm G, tâm đường tròn ngoại tiếp O. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh rằng tam giác MON đồng dạng AHB. Từ đó chứng minh H, G, O thẳng hàng.
Bài 5. Cho tam giác ABC. Dựng ra ngoài các tam giác ABF và ACE lần lượt vuông tại B, C và đồng dạng với nhau. BE giao CF tại K. Chứng minh rằng AK ⊥ BC.
Bài 6. Cho tứ giác ABCD có hai đường chéo cắt nhau tại I thỏa mãn tam giác AID đòng dạng tam giác BIC. Kẻ IH ⊥ AD, IK ⊥ BC. M, N lần lượt là trung điểm AB, CD. Chứng minh rằng MN ⊥ HK.
Bài 7. Cho tứ giác ABCD có hai đường chéo cắt nhau tại O. Gọi M, N lần lượt là trung điểm AB, CD; H, K lần lượt là trực tâm các tam giác AOD, BOC. Chứng minh rằng MN ⊥ HK.
Bài 8. Cho tam giác ABC. Các đường cao AD, BE, CF . M thuộc tia DF , N thuộc tia DE sao cho ∠M AN = ∠BAC. Chứng minh rằng A là tâm đường tròn bàng tiếp góc D của tam giác DMN .
Bài 9. Cho tứ giác ABCD có hai đường chéo AC = BD. Về phía ngoài tứ giác dựng các tam giác cân đồng dạng AMB và CND (cân tại M, N ). Gọi P, Q lần lượt là trung điểm của AD, BC. Chứng minh rằng M N vuông góc với PQ.
Bài 10. Cho tam giác ABC. Các đường cao AD, BE, CF . Trên AB, AC lấy các điểm K, L sao cho ∠FDK = ∠EDL = 90◦. Gọi M là trung điểm KL. Chứng minh rằng AM ⊥ EF .
Mong các bạn giúp đỡ mình. Giúp được bài nào thì giúp nhé.