Cho hình chóp S.ABCD có đáy là hình thang với các cạnh đáy là AB và CD. Gọi I ,J lần lượt là trung điểm của AD và BC, G là trọng tâm của tam giác SAB. Tìm giao tuyến của hai mặt phẳng (SAB) và (IJG).
Cho hình chóp S.ABCD. Hai điểm M và G lần lượt là trọng tâm tam giác SAB và SAD; điểm N thuộc SG và P nằm trong tứ giác ABCD. Gọi I; J lần lượt là trung điểm của AB và AD và K là giao điểm của MN và IJ; E là giao điểm của KP và AC; F là giao điểm của IJ và AC Tìm giao tuyến của (MNP) và (SAC)
A. EF
B. KE
C. KF
D. Tất cả sai
Cho hình chóp S.ABCD. Hai điểm G; H lần lượt là trọng tâm tam giác SAB và SCD. Gọi O là giao điểm của AC và BD; I là giao điểm của SO và GH. Tìm giao tuyến của: (BGH) và (SAC)
A. HI
B .GI
C. KI với K là giao điểm của SA và BG
D. đáp án khác
cho hình chóp S.ABCD, đáy ABCD là vuông tâm I. Gọi M,N lần lượt là trung điểm SB,SC
a) tìm giao tuyến của hai mặt phẳng (SBD) và (SAC)
b) tìm giao tuyến của 2 mặt phẳng (SAB) và (SCD)
c) tìm giao tuyến của 2 mặt phẳng (SAD) và (SBC)
d) tìm giao tuyến của 2 mặt phẳng (MNA) và (ABCD)
Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Gọi G là trọng tâm của tam giác SAB và I là trung điểm của AB. Lấy điểm M trong đoạn AD sao cho AD = 3AM
a) Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC).
b) Đường thẳng qua M song song với AB cắt CI tại N. Chứng minh rằng NG // (SCD).
c) Chứng minh rằng MG // (SCD).
cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật tâm O. Gọi H,K lần lượt là trung điểm SA,SB
a) tìm giao tuyến của hai mặt phẳng (SBD) và (SAC)
b) tìm giao tuyến của 2 mặt phẳng (SAB) và (SCD)
c) tìm giao tuyến của 2 mặt phẳng (SAD) và (SBC)
d) tìm giao tuyến của 2 mặt phẳng (HKCD) và (ABCD)
cho hình chóp S.ABCD đáy ABCD là tứ giác lồi (các cặp cạnh đối không song song. Gọi E là điểm thuộc cạnh SC
a) tìm giao tuyến của 2 mặt phẳng (SAC) và (SBD)
b) tìm giao tuyến của 2 mặt phẳng (SAB) và (SCD)
c) tìm giao tuyến của 2 mặt phẳng (SAD) và (SBC)
cho hình chóp s.abcd có đáy là hình bình hành. Gọi M,N lần lượt là trung điểm của các cạng SA,SC, và G là trọng tâm của △ABC
a) tìm giao tuyến của hai mặt phẳng (SAC) và (SBD)
b) tìm giao điểm BC và mặt phẳng (GMN)
c) xác định thiết diện của hình chóp khi cắt bởi mặt phẳng (GMN)
Cho hình chóp S.ABCD. Hai điểm M và G lần lượt là trọng tâm tam giác SAB và SAD; điểm N thuộc SG và P nằm trong tứ giác ABCD. Gọi I; J lần lượt là trung điểm của AB và AD và K là giao điểm của MN và IJ; E là giao điểm của KP và AC; F là giao điểm của IJ và AC. Gọi H là giao điểm của OE và SA; Q là giao điểm của NH và SD. Tìm giao tuyến của (MNP ) và (SCD)
A. QR trong đó R là giao điểm của KP và CD
B. QE
C. QF
D. QH