Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông tâm O. Khoảng cách từ điểm O đến mặt phẳng (SCD) bằng a 14 7 và góc giữa đường thẳng SB với mặt đáy bằng 60°. Tính thể tích V của khối chóp S.ABC theo a.
A. V = 3 a 3 2 2
B. V = 3 a 3 2 4
C. V = 3 a 3 2 16
D. V = 9 a 3 2 4
Cho hình chóp tứ giác đểu S.ABCD có cạnh đáy bằng a, thể tích khối chóp S.ABCD là V = a 3 3 18 . Góc giữa mặt bên và mặt phẳng đáy của hình chóp đã cho là?
A. 60 °
B. 45 °
C. 30 °
D. 75 °
Cho hình chóp tứ giác S.ABCD có đáy là hình vuông, mặt bên (SAB) là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Biết khoảng cách từ điểm B đến mặt phẳng (SCD) bằng 3 7 a 7 . Tính thể tích V của khối chóp S.ABCD
A. V = 1 3 a 3
B. V = a 3
C. V = 2 3 a 3
D. V = 3 2 a 3
Cho hình chóp tứ giác đều S.ABCd có cạnh đáy bằng a. Góc giữa mặt bên và mặt đáy bằng 60 ∘ . Tính thể tích V của khối chóp đã cho
A. V = a 3 6 6
B. V = a 3 3 6
C. V = a 3 3 2
D. V = a 3 3 18
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, đáy nhỏ của hình thang là CD, cạnh bên S C = a 15 . Tam giác SAD là tam giác đều cạnh bằng 2a và nằm trong mặt phẳng vuông góc với đáy. Gọi H là trung điểm AD, khoảng cách từ B đến mặt phẳng (SHC) bằng 2 a 6 . Tính thể tích V của khối chóp S.ABCD?
A. V = 8 a 3 6 .
B. V = 12 a 3 6 .
C. V = 4 a 3 6 .
D. V = 24 a 3 6 .
Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình chữ nhật, cạnh A B = a , A D = 2 a , cạnh bên SA vuông góc với mặt phẳng đáy, góc giữa cạnh SD và mặt phẳng đáy bằng 60 o . Thể tích V của khối chóp S.ABCD là
A. V = 2 a 3 3 .
B. V = 4 a 3 3 .
C. V = a 3 3 .
D. V = 4 a 3 3 .
Cho hình chóp tứ giác đều S.ABCD, có cạnh đáy bằng a và có thể tích V = a 3 3 6 Gọi J là điểm cách đều tất cả các mặt của hình chóp. Tính khoảng cách d từ J đến mặt phẳng đáy.
A. d = a 3 4
B. d = a 3 2
C. d = a 3 6
D. d = a 3 3
Cho hình chóp S.ABCD có đáy là hình thoi tâm O, A C = 2 a 3 , B D = 2 a . Hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng đáy (ABCD). Biết khoảng cách từ tâm O đến (SAB) bằng a 3 4 tính thể tích V của khối chóp S.ABCD theo a.
A. V = a 2 3
B. V = a 3 3 3
C. V = a 3 3 9
D. V = a 3 3 6
Cho hình chóp tứ giác đều S.ABCD có AB = a, gọi α là góc giữa mặt bên và mặt đáy của hình chóp S.ABCD. Tính khoảng cách d giữa SA và CD theo a và α
A. d = a.cos α
B. d = a.sin α
C. d = a.sin2 α
D. d = a.cos2 α