Chọn C.
Gọi O là tâm mặt đáy, suy ra SO ⊥ (ABCD)
Góc giữa mặt bên và mặt đáy là S N O ^ = 60 °
Vì M là trung điểm của SD nên
Chọn C.
Gọi O là tâm mặt đáy, suy ra SO ⊥ (ABCD)
Góc giữa mặt bên và mặt đáy là S N O ^ = 60 °
Vì M là trung điểm của SD nên
Cho hình chóp tứ giác đều S. ABCD có cạnh đáy bằng 2a, góc giữa mặt bên và mặt đáy bằng 60 o . Gọi M, N lần lượt là trung điểm của các cạnh cạnh SD, DC. Thể tích khối tứ diện ACMN là:
A. a 3 2 4
B. a 3 8
C. a 3 3 6
D. a 3 2 2
Cho hình chóp đều S.ABCD có cạnh đáy bằng a, góc giữa mặt bên với đáy bằng 45 o . Gọi M, N, P lần lượt là trung điểm của SA, SB, CD. Thể tích khối tứ diện AMNP là ?
A. a 3 16
B. a 3 24
C. a 3 6
D. a 3 48
Cho hình chóp đều S.ABCD có cạnh đáy bằng a, góc giữa mặt bên với đáy bằng 45°. Gọi M, N, P lần lượt là trung điểm của SA, SB, SC. Tính thể tích của khối tứ diện AMNP.
A. a 3 48
B. a 3 16
C. a 3 6
D. a 3 24
Cho khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc giữa cạnh bên và mặt phẳng đáy bằng 60 0 . Gọi M là điểm đối xứng vưới C qua D và N là trung điểm của cạnh SC. Mặt phẳng (BMN) chia khối chóp S.ABCD thành hai khối đa diện ( H 1 ) và ( H 2 ) trong đó ( H 1 ) chứa điểm C. Thể tích của khối ( H 1 ) là
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a, góc giữa mặt bên và mặt đáy bằng 60 ° . Tính theo a thể tích khối chóp S.ABCD
A. 4 a 3 3 3
B. a 3 3 3
C. 2 a 3 3 3
D. 2 a 3 6 3
Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng 4. Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M, N, P lần lượt là trung điểm của các cạnh SD, CD, BC. Thể tích khối chóp S.ABPN là x, thể tích khối tứ diện CMNP là y. Giá trị của x,y thỏa mãn các bất đẳng thức nào dưới đây?
A. x 2 + 2 x y − y 2 > 160
B. x 2 − 2 x y + 2 y 2 < 109
C. x 2 + x y − y 4 < 145
D. x 2 − x y + y 4 > 125
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a. Gọi M và N lần lượt là trung điểm của SA và CD. Cho biết MN tạo với mặt đáy một góc bằng 30 0 . Tính thể tích khối chóp S.ABCD .
Bài 1: cho hình chóp S.ABCD có đáy ABCD là hình thang , BAD=ABC= 90 độ. Cạnh AB=BC=a, AD=2a, SA vuông góc ( ABCD ), Sa=2a. Gọi M,N lần lượt là trung điểm của SA và SD. Tính theo a thể tích khối chóp S.BCNM
Bài 2: cho hình chóp tứ giác đều S.ABCD có AB = a; SA = a\(\sqrt{2}\) . Gọi M,N lần lượt là trung điểm của SA,SB,SD. Tính theo a thể tích của khối tứ diện A.MNP
Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2 2 , cạnh bên SA vuông góc với mặt phẳng đáy và SA=3. Mặt phẳng α qua A và vuông góc với SC cắt cạnh SB, SC, SD lần lượt tại các điểm M, N, P. Thể tích V của khối cầu ngoại tiếp tứ diện CMNP