Cho hình chóp tứ giác đều S.ABCD, có đáy ABCD là hình vuông, cạnh bên bằng cạnh đáy và bằng a. Gọi M là trung điểm của SC. Góc giữa hai mặt phẳng (MBD) và (ABCD) bằng
A. 90 0
B. 30 0
C. 45 0
D. 60 0
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Gọi G là trọng tâm của tam giác SAB và M, N là trung điểm của SC, SD. Tính cosin của góc giữa hai mặt phẳng (GMN) và (ABCD).
A. 2 39 39
B. 3 6
C. 2 39 13
D. 13 13
Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình chữ nhật cạnh AB = a, AD = a 2 , cạnh bên SA vuông góc với mặt phẳng (ABCD), góc giữa SC và mặt phẳng (ABCD) bằng 60 độ. Gọi M là trung điểm của cạnh SB (tham khảo hình vẽ). Khoảng cách từ điểm M tới mặt phẳng (ABCD) bằng
A. a/2
B. 3a/2
C. 2 a 3
D. a 3
Cho hình chóp tứ giác S . A B C D có đáy A B C D là hình chữ nhật cạnh A B = a , A D = a 2 , cạnh bên S A vuông góc với mặt phẳng A B C D , góc giữa S C và mặt phẳng A B C D bằng 60 0 . Gọi M là trung điểm của cạnh S B (tham khảo hình vẽ). Khoảng cách từ điểm M tới mặt phẳng A B C D bằng
A. a 2 .
B. 3 a 2 .
C. 2 a 3 .
D. a 3 .
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Gọi G là trọng tâm của tam giác SAB và M, N lần lượt là trung điểm của SC, SD (tham khảo hình vẽ bên). Tính côsin của góc giữa hai mặt phẳng G M N v à A B C D .
A. 2 39 39
B. 13 13
C. 3 6
D. 2 39 13
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Gọi G là trọng tâm của tam giác SAB và M, N lần lượt là trung điểm của SC, SD (tham khảo hình vẽ bên). Tính côsin của góc giữa hai mặt phẳng (GMN) và (ABCD)
A. 3 6
B. 2 39 13
C. 2 39 39
D. 13 13
Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên tạo với đáy một góc 60 o . Gọi M là trung điểm của SC. Mặt phẳng đi qua AM và song song với BD cắt SB tại E và cắt SD tại F. Tính thể tích V khối chóp S.AEMF.
A. V = a 3 6 36 .
B. V = a 3 6 9 .
C. V = a 3 6 6 .
D. V = a 3 6 18 .
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M, N lần lượt là trung điểm của SC và AD. Góc giữa đường thẳng MN và mặt đáy (ABCD) bằng:
A. 90 °
B. 30 °
C. 45 °
D. 60 °
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, đáy nhỏ của hình thang là CD, cạnh bên S C = a 15 . Tam giác SAD là tam giác đều cạnh bằng 2a và nằm trong mặt phẳng vuông góc với đáy. Gọi H là trung điểm AD, khoảng cách từ B đến mặt phẳng (SHC) bằng 2 a 6 . Tính thể tích V của khối chóp S.ABCD?
A. V = 8 a 3 6 .
B. V = 12 a 3 6 .
C. V = 4 a 3 6 .
D. V = 24 a 3 6 .