Cho hình chóp tứ giác S.ABCD. Gọi O là giao điểm AC và BD. Trong các mặt phẳng sau, điểm O nằm trên mặt phẳng nào ?
A.(SAC)
B.(SAB)
C.(SAD)
D.(SBC)
cho hình chóp S.ABCD đáy ABCD là tứ giác lồi (các cặp cạnh đối không song song. Gọi F là điểm thuộc cạnh SB
a) tìm giao tuyến của 2 mặt phẳng (SAB) và (SBD)
b) tìm giao tuyến của 2 mặt phẳng (SAB) và (SDF)
c) tìm giao tuyến của 2 mặt phẳng (FCD) và (SBC)
cho hình chóp S.ABCD đáy ABCD là tứ giác lồi (các cặp cạnh đối không song song. Gọi E là điểm thuộc cạnh SC
a) tìm giao tuyến của 2 mặt phẳng (SAC) và (SBD)
b) tìm giao tuyến của 2 mặt phẳng (SAB) và (SCD)
c) tìm giao tuyến của 2 mặt phẳng (SAD) và (SBC)
Cho hình chóp SABC. gọi N là điểm nằm trên cạnh SB. M , P là điểm thuộc miền trong mặt phẳng ( SAB ) và (SBC). Tìm thiết diện tạo bởi (MNP) và hình chóp
cho hình chóp S.ABCD đáy ABCD là hình chữ nhật, tâm O. Điểm H thuộc cạnh SC
a) tìm giao tuyến của 2 mặt phẳng (SAC) và (SBD)
b) tìm giao tuyến của 2 mặt phẳng (SAB) và (SAD)
c) tìm giao tuyến của 2 mặt phẳng (HAD) và (SCD)
1. Cho tam giác ABC và điểm S không thuộc mặt phẳng (ABC). Lấy D,E là các điểm lần lượt thuộc các cạnh SA, SB và D,E khác S a. Đường thẳng DE có nằm trong mặt phẳng (SAB) không? b. Giả sử DE cắt AB tại F. Chứng minh rằng F là điểm chung của hai mặt phẳng (SAB) và (CDE) 2. Cho hình chóp tứ giác S. ABCD và M là một điểm thuộc cạnh SC ( M khác S,C). Giả sử hai đường thẳng AB và CD cắt nhau tại N. Chứng minh rằng đường thẳng MN là giao tuyến của hai mặt phẳng (ABM) và (SCD)
1) cho hình chóp S.ABCD đáy ABCD là hình chữ nhật, tâm O. Điểm H thuộc cạnh SC
a) tìm giao tuyến của 2 mặt phẳng (SAC) và (SBD)
b) tìm giao tuyến của 2 mặt phẳng (SAB) và (SAD)
c) tìm giao tuyến của 2 mặt phẳng (HAD) và (SCD)
2) cho hình chóp S.ABCD đáy ABCD là hình vuông, tâm I. Điểm K thuộc cạnh SD, vẽ hình
a) tìm giao tuyến của 2 mặt phẳng (SAC) và (SBD)
b) tìm giao tuyến của 2 mặt phẳng (SCD) và (SAD)
c) tìm giao tuyến của 2 mặt phẳng (KAB) và (SAD)
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B với AB = a và B A C ^ = 30 0 . Hai mặt phẳng (SAB) và (SAC) cùng vuông góc với mặt phẳng (ABC). Tính khoảng cách d từ điểm A đến mặt phẳng (SBC) biết khối chóp S.ABC có thể tích bằng a 3 3 36
A . d = a 2 5
B . d = a 3
C . d = a 5 5
D . d = a 3 6
Cho hình chóp S.ABCD có đáy ABCD là hình thang với AB là đáy lớn. Gọi M là trung điểm của đoạn AB, E là giao điểm của hai cạnh của hình thang ABCD và G là trọng tâm của tam giác ECD.
(a) Chứng minh rằng bốn điểm S, E, M, G cùng thuộc một mặt phẳng (α) và mặt phẳng này cắt cả hai mặt phẳng (SAC) và (SBD) theo cùng một giao tuyến d.
(b) Xác định giao tuyến của hai mặt phẳng (SAD) và (SBC).
(c) Lấy một điểm K trên đoạn SE và gọi C' = SC ∩KB, D'=SD ∩KA. Chứng minh rằng hai giao điểm của AC' và BD' thuộc đường thẳng d nói trên.
Cho các phát biểu sau, số phát biểu đúng:
1. Có một và chỉ một đường thẳng đi qua 2 điểm phân biệt
2. Có một và chỉ một mặt phẳng đi qua 3 điểm phân biệt
3. Nếu 1 đường thẳng có 1 điểm thuộc một mặt phẳng thì mọi điểm của đường thẳng đều thuộc mặt phẳng đó
4. Tồn tại 4 điểm không cùng thuộc một mặt phẳng
5. Tồn tại 4 điểm cùng thuộc một mặt phẳng
6. Nếu 2 mặt phẳng phân biệt có 1 điểm chung thì chúng sẽ còn 1 điểm chung khác
7. Trên mỗi mặt phẳng, các kết quả đã biết trong hình học phẳng có thể không đúng
A. 3
B. 4
C. 5
D. 6