Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

cho hình chóp SABCD đáy là hình vuông cạnh 2a. (SAB) vuông góc (ABCD). Tam giác SAB là tam giác cân tại S. Tính thể tích SABCD biết a)Góc giữa SA và đáy là alpha biết tan alpha=2 b)Góc giữa SC và đáy là alpha biết tan alpha= căn 5 c)Góc giữa (SCD) và (ABCD) là alpha biết tan alpha=3

Hồng Phúc
17 tháng 6 2021 lúc 22:22

Kẻ SH vuông góc AB tại H.

a, Ta có: \(h=SH=AH.tan\alpha=2a\)

\(\Rightarrow V=\dfrac{1}{3}.B.h=\dfrac{1}{3}.\left(2a\right)^2.2a=\dfrac{8a^3}{3}\)

b, \(SB=BC.tan\alpha=2\sqrt{5}a\Rightarrow SH=\sqrt{SB^2-BH^2}=\sqrt{19}a\)

\(\Rightarrow V=\dfrac{1}{3}.B.h=\dfrac{1}{3}.\left(2a\right)^2.\sqrt{19}a=\dfrac{4\sqrt{19}a^3}{3}\)

c, Kẻ HI vuông góc với CD.

Ta có: \(SH=HI.tan\alpha=6a\)

\(\Rightarrow V=\dfrac{1}{3}.B.h=\dfrac{1}{3}.\left(2a\right)^2.6a=8a^3\)


Các câu hỏi tương tự
Lê vsbzhsjskskskssm
Xem chi tiết
Lê vsbzhsjskskskssm
Xem chi tiết
Quoc Bao Tran
Xem chi tiết
Duy Khánh
Xem chi tiết
Giải Trí Tổng Hợp 24h
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Lê vsbzhsjskskskssm
Xem chi tiết
Lê vsbzhsjskskskssm
Xem chi tiết
Quyên Quyên
Xem chi tiết