Đáp án D.
Ta có
B C ⊥ A B B C ⊥ S A ⇒ B C ⊥ ( S A B ) ⇒ B C ⊥ S I
Gọi H là hình chiếu của B lên SI ⇒ B H ⊥ S I B H ⊥ B C ⇒ B H = d ( B C ; S I )
⇒ Δ B H I ∽ Δ S A I ⇒ B H S A = B I S I ⇒ B H = S A . B I S I = a 3 . a 2 a = a 3 2
Đáp án D.
Ta có
B C ⊥ A B B C ⊥ S A ⇒ B C ⊥ ( S A B ) ⇒ B C ⊥ S I
Gọi H là hình chiếu của B lên SI ⇒ B H ⊥ S I B H ⊥ B C ⇒ B H = d ( B C ; S I )
⇒ Δ B H I ∽ Δ S A I ⇒ B H S A = B I S I ⇒ B H = S A . B I S I = a 3 . a 2 a = a 3 2
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, AB = AD = 2a, CD = a. Gọi I là trung điểm của cạnh AD, biết hai mặt phẳng (SBI); (SCI) cùng vuông góc với đáy và thể tích khối chóp S. ABCD bằng 3 15 a 3 5 . Tính góc giữa hai mặt phẳng (SBC); (ABCD).
A. 600
B. 300
C. 360
D. 450
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A , D , AD = DC = a , AB = 2a (a > 0) Hình chiếu của S lên mặt đáy trùng với trung điểm I của AD. Thể tích khối chóp S.IBC biết góc giữa SC và mặt đáy bằng 60 °
A. m = - 3
B. m = - 1 2
C. m = 1 2
D. m = 1
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B. Hình chiếu vuông góc của S trên đáy ABCD trùng với trung điểm AB. Biết A B = a , B C = 2 a , B D = a 10 . Góc giữa hai mặt phẳng (SBD) và đáy là 60 ° . Tính d là khoảng cách từ A đến mặt phẳng (SCD) gần với giá trị nào nhất trong các giá trị sau đây ?
A. 0,80a
B. 0,85a
C. 0,95a
D. 0,98a
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy và SA=2a. Gọi M là trung điểm của SD. Tính khoảng cách d giữa đường thẳng SB và mặt phẳng (ACM)
A. d = 3 a 2 .
B. d = a .
C. d = 2 a 3 .
D. d = a 3 .
Cho hình chóp S.ABCD đáy ABCD là hình thang vuông tại A và B, I là trung điểm của AB, có (SIC) và (SID) cùng vuông góc với đáy. Biết A D = A B = 2 a , B C = a , khoảng cách từ I đến (SCD) là 3 a 2 4 . Khi đó thể tích khối chóp S.ABCD là:
A. a 3 .
B. a 3 3 .
C. 3 a 3 .
D. a 3 3 2 .
Cho hình chóp S.ABCD có đáy là hình thang ABCD vuông tại A và D, có AB = 2AD = 2CD , tam giác SAD đều và nằm trong mặt phẳng vuông góc đáy. Gọi I là trung điểm AD, biết khoảng cách từ I đến mặt phẳng (SBC) bằng 1(cm). Tính diện tích S hình thang ABCD.
A. S = 10 3 c m 2
B. S = 20 3 c m 2
C. S = 200 27 c m 2
D. S = 5 3 c m 2
Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, A D = B C = a 13 4 , AB = 2a, C D = 3 a 2 , mặt phẳng (SCD) vuông góc với mặt phẳng (ABCD). Tam giác ASI cân tại S, với I là trung điểm của cạnh AB, SB tạo với mặt phẳng (ABCD) một góc 30º. Khoảng cách giữa SI và CD là
A. a 13 7
B. 2 a 21 7
C. 2 a 13 7
D. a 21 7
Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, A D = B C = a 13 4 , A B = 2 a , C D = 3 a 2 , mặt phẳng (SCD) vuông góc với mặt phẳng (ABCD). Tam giác ASI cân tại S, với I là trung điểm của cạnh AB, SB tạo với mặt phẳng (ABCD) một góc 300. Khoảng cách giữa SI và CD là
A. a 13 7
B. 2 a 21 7
C. 2 a 13 7
D. a 21 7
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh bằng 4a. Cạnh bên SA=2a. Hình chiếu vuông góc của đỉnh S trên mặt phẳng (ABCD)là trung điểm của H của đoạn thẳng AO. Tính khoảng cách d giữa các đường thẳng SD và AB
A.d=4a
B. d = 4 a 22 11
C.d=2a
D. d = 3 a 2 11