: Cho hình chóp S.ABCD có SA⊥(ABCD) và SA=a; đáy ABCD là hình thang vuông có đáy bé là BC, biết AB=BC=a, AD=2a.
1) Chứng minh các mặt bên của hình chóp là các tam giác vuông
2) Tính khoảng cách giữa AB và SD
3) M, H là trung điểm của AD, SM cm AH⊥(SCM)
4) Tính góc giữa SD và (ABCD); SC và (ABCD)
5) Tính góc giữa SC và (SAD)
6) Tính tổng diện tích các mặt của chóp.
1: SA vuông góc (ABCD)
=>SA vuông góc AB
=>ΔSAB vuông tại A
SA vuông góc (ABCD)
=>SA vuông góc AD
=>ΔSAD vuông tại A
4: (SD;(ABCD))=(DS;DA)=góc SDA
tan SDA=SA/AD=1/2
=>góc SDA=27 độ
(SC;(ABCD))=(CS;CA)=góc SCA
AC=căn a^2+a^2=a*căn 2
tan SCA=SA/AC=1/căn 2
=>góc SCA=35 độ