Đáp án B
V S . B C D = 1 3 S A . S Δ B C D = 1 3 . S A . 1 2 . A B . B C = 1 3 . a 3 . 1 2 . a . a = a 3 3 6 .
Đáp án B
V S . B C D = 1 3 S A . S Δ B C D = 1 3 . S A . 1 2 . A B . B C = 1 3 . a 3 . 1 2 . a . a = a 3 3 6 .
Cho hình chóp S. ABCD có đáy ABCD là hình chữ nhật A B = a , A D = 2 a , cạnh bên SA vuông góc với đáy và thể tích khối chóp S.ABCD bằng 2 a 3 3 . Tính góc tạo bởi đường thẳng SB với măṭ phẳng ( ABCD).
A 75 °
B. 45 °
C. 60 °
D. 30 °
Cho hình chóp S.ABC có đáy ABCD là tam giác vuông tại C, AB= 5 a,AC=a. Cạnh SA=3a và vuông góc với mặt phẳng đáy. Thể tích khối chóp S.ABC bằng
A. a 3
B. 5 2 a 3
C. 2 a 3
D. 3 a 3
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a a > 0 . Hai mặt phẳng (SBC) và S C D cùng tạo với mặt phẳng (ABCD) một góc 45 ° . Biết S B = a và hình chiếu của S trên mặt phẳng (ABCD) nằm trong hình vuông ABCD. Tính thể tích khối chóp S.ABCD
A. 2 a 3 3
B. 2 a 3 6
C. a 3 4
D. 2 a 3 9
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2 2 , cạnh bên SA vuông góc với mặt phẳng đáy và SA=3 Mặt phẳng α qua A và vuông góc với SC cắt các cạnh SB, SC, SD lần lượt tại các điểm M, N, P. Tính thể tích V của khối cầu ngoại tiếp tự diện CMNP.
A. V = 64 2 π 3
B. V = 125 π 6
C. V = 32 π 3
D. V = 10 Sπ 3
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại C với CA=CB=a;SA=a 3 ; SB=a 5 và SC=a 2 . Tính bán kính R của mặt cầu ngoại tiếp hình chóp S.ABC?
A. a 11 6
B. a 11 2
C. a 11 3
D. a 11 4
Cho hình chóp đều S.ABCD có cạnh đáy bằng 2a, khoảng cách giữa hai đường thẳng SA và CD bằng 3 a. Thể tích khối chóp S.ABCD bằng
A. a 3 3 3
B. 4 a 3 3
C. a 3 3
D. a 3 4 3 3
Cho hình chóp đều S.ABCD, đáy ABCD là hình vuông cạnh a, các cạnh bên tạo với đáy góc 45 độ. Diện tích toàn phần của hình chóp trên theo a là.
A. 2 3 a 2
B. 3 + 1 a 2
C. 3 - 1 a 2
D. 4 a 2
Cho hình chóp S.ABC có (SAB), (SAC) cùng vuông góc với đáy, cạnh bên SB tạo với đáy một góc 60 ° , đáy ABC là tam giác vuông cân tại B với BA=BC=a. Gọi M, N lần lượt là trung điểm của SB, SC. Tính thể tích khối đa diện AMNBC?
A. a 3 3 4
B. a 3 3 6
C. a 3 3 24
D. a 3 3 8
Cho hình chóp S . A B C D có SA vuông góc với mặt phẳng (ABC), đáy ABC là tam giác cân tại A và B A C ^ = 120 ° , B C = 2 a . Gọi M. N lần lượt là hình chiếu của điểm A trên SB, SC. Tính bán kính mặt cầu đi qua bốn điểm A, N, M, B.
A. 2 a 3 3
B. 2 a 3
C. a 3 2
D. a 3