Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB=a, cạnh bên SA vuông góc với đáy và SA=a. Góc giữa hai mặt phẳng S B C v à S A D bằng:
A. 45 0
B. 30 0
C. 60 0
D. 90 0
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với A B = a . Cạnh bên SA vuông góc với đáy và SA = a. Góc giữa hai mặt phẳng (SBC) và (SAD) bằng
A. 30 °
B. 45 °
C. 60 °
D. 90 °
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B với AB = BC = a,
AD = 2a. Biết SA vuông góc với mặt phằng (ABCD) và S A = a 5 . Côsin của góc tạo bởi hai mặt phẳng (SBC) và (SCD) bằng
A. 2 21 21 .
B. 21 12 .
C. 21 6 .
D. 21 21 .
Cho hình chóp S.AB có đáy ABC là tam giác vuông cân tại A, AB=2a, SA vuông góc với mặt đáy và góc giữa SB với mặt đáy bằng 60 ° . Côsin góc giữa hai mặt phẳng (SBC) và (ABC) bằng
A. 15 5
B. 7 7
C. 2 5
D. 2 7 7
Cho hình chóp S.ABC có đáy là tam giác vuông cân cạnh bằng B, cạnh bên SA vuông góc với mặt phẳng đáy, AB=BC=a và SA=a. Góc giữa hai mặt phẳng (SAC) và (SBC) bằng
A. 90 0 .
B. 30 0 .
C. 60 0 .
D. 45 0 .
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có cạnh A B = a , B C = 2 a . Hai mặt bên (SAB) và (SAD) cùng vuông góc với mặt phẳng đáy (ABCD) cạnh S A = a 15 . Thể tích của khối chóp S.ABCD bằng
A. 2 a 3 15
B. a 3 15 3
C. 2 a 3 15 3
D. 2 a 3 15 6
Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, AB = BC = CD = a, AD = 2a. Hai mặt phẳng (SAB) và (SAD) cùng vuông góc với mặt phẳng đáy. Gọi M, N lần lượt là trung điểm của SB và CD. Tính cosin góc giữa MN và (SAC), biết thể tích khối chóp S.ABCD bằng a 3 3 4
A . 5 10
B . 3 310 20
C . 310 20
D . 3 5 10
Cho hình chóp S.ABCD đáy là hình thang cân có A B = C D = B C = a , A D = 2 . Cạnh bên SA vuông góc với đáy, SA = 2a. Thể tích khối cầu ngoại tiếp hình chóp S.BCD là:
A. 8 2 π a 3 3
B. 16 2 π a 3 3
C. 16 π a 3 3
D. 32 2 π a 3 3
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, SA vuông góc với (ABCD), AB = BC = a, AD = 2a. Nếu góc giữa SC và mặt phẳng (ABCD) bằng 45 ° thì góc giữa mặt phẳng (SAD) và (SCD) bằng
A. 45 °
B. 30 °
C. arco s 6 3 .
D. 60 °