Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, đáy nhỏ của hình thang là CD, cạnh bên SC= a 15 Tam giác SAD là tam giác đều cạnh bằng 2a và nằm trong mặt phẳng vuông góc với đáy. Gọi H là trung điểm AD, khoảng cách từ B đến mặt phẳng (SHC) bằng 2 a 6 Tính thể tích V của khối chóp S.ABCD?
Cho hình chóp S.ABCD với đáy ABCD là hình thang vuông tại A và D, đáy nhỏ của hình thang là CD, cạnh bên SC= a 15 Tam giác SAD là tam giác đều cạnh 2a và nằm trong mặt phẳng vuông góc với đáy. Gọi H là trung điểm của cạnh AD, khoảng cách từ B tới mặt phẳng (SHC) bằng 2 6 a Tính thể tích V của khối chóp S.ABCD?
Cho hình chóp S.ABCD, đáy ABCD là hình vuông cạnh 2a, SAD là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M, N lần lượt là trung điểm của BC và CD. Khi đó bán kính mặt cầu ngoại tiếp khối SCMN là:
A . 3 a 2
B . a 3
C . 93 6 a
D . 31 12 a
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SAD là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M và N lần lượt là trung điểm của BC và CD (tham khảo hình vẽ bên). Tính bán kính R của mặt cầu ngoại tiếp hình chóp S.CMN
A. R = a 37 6
B. R = a 29 8
C. R = 5 a 3 12
D. R = a 93 12
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, mặt bên SAD là tam giác đều cạnh 2a và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính thể tích khối chóp S.ABCD biết rằng mặt phẳng (SBC) tạo với mặt phẳng đáy một góc 30 0
A . 2 a 3 3 3
B . 4 a 3 3 3
C . a 3 3 2
D . 2 3 a 3
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, mặt bên SAD là tam giác đều cạnh 2a và nằm trong mặt phẳng vuông góp với mặt phẳng (ABCD). Góc giữa mặt phẳng (SBC) và mặt phẳng (ABCD) là 30 0 . Thể tích của khối chóp S.ABCD là:
A. 2 a 3 3 3
B. a 3 3 3
C. 4 a 3 3 3
D. 2 a 3 3
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SAD là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M và N lần lượt là trung điểm của BC và CD. Tính bán kính R của khối cầu ngoại tiếp hình chóp S.CMN
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, mặt bên SAD là tam giác đểu cạnh 2a và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính thể tích khối chóp S.ABCD biết rằng mặt phẳng (SBC) tạo với mặt phảng đáy một góc 30 0 .
A. a 3 3 2
B. 2 3 a 3
C. 2 a 3 3 3
D. 4 3 a 3 3
Hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a. Các cạnh bên SA = SB = SC = SD = a√2. Gọi I và K lần lượt là trung điểm của AD và BC.
a) Chứng minh mặt phẳng (SIK) vuông góc với mặt phẳng (SBC).
b) Tính khoảng cách giữa hai đường thẳng AD và SB.
Cho hình chóp S.ABCD có đáy là hình thang ABCD vuông tại A và D, có AB = 2AD = 2CD , tam giác SAD đều và nằm trong mặt phẳng vuông góc đáy. Gọi I là trung điểm AD, biết khoảng cách từ I đến mặt phẳng (SBC) bằng 1 (cm). Tính diện tích S hình thang ABCD.
A. S = 10 3 ( c m 2 )
B. S = 20 3 ( c m 2 )
C. S = 200 27 ( c m 2 )
D. S = 5 3 ( c m 2 )