Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB=a, AD=2a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Khoảng cách từ D đến (SBC) bằng 2 a 3 . Tính khoảng cách giữa hai đường thẳng SB và AC
A. a 10 10
B. a 10 5
C. 2 a 10 5
D. 2 a 5 5
Cho hình chóp S.ABCD có đáy là hình chữ nhật với AB=2a; AD=a. Tam giác SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy. Góc giữa mặt phẳng (SBC) và (ABCD) bằng 45 0 . Khi đó thể tích khối chóp S.ABCD là:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = 2a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Thể tích của khối chóp S. ABCD bằng
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với A B = a , A D = a 2 . Gọi H là trung điểm của cạnh AB. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa hai mặt phẳng (SAC) và (ABCD) là 60 ° . Tính khoảng cách giữa hai đường thẳng CH và SD
A. 2 a 5 5
B. 2 a 10 5
C. a 5 5
D. 2 a 2 5
Cho hình chóp S.ABCD có đáy hình chữ nhật, AB=a; AD=2a. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 45 0 . Gọi M là trung điểm của SD. Tính theo a khoảng cách d từ điểm M đến mặt phẳng (SAC)
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = 2a, AD = a 2 . Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Thể tích V của hình chóp S.ABCD là:
A. V = 2 a 3 3 3
B. V = 2 a 3 6 3
C. V = 3 a 3 2 4
D. V = a 3 6 3
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB = a, AD = 2a. Mặt bên (SAB) là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính bán kính R của mặt cầu ngoại tiếp hình chóp S.ABCD
Cho hình chóp S.ABCD có đáy là hình
chữ nhật và AB=2a, AD=a. Tam giác
SAB đều và nằm trong mặt phẳng
vuông góc với đáy. Bán kính mặt
cầu ngoại tiếp hình chóp S.ABCD
bằng
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AD=a, A B = 3 a , ∆ S A B là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Tính theo a diện tích S của mặt cầu ngoại tiếp hình chóp S.ABCD.