Đáp án là B
Mà ∆ SAB đều
Vậy thể tích hình chóp S.ABCD: = 2 a 3 6 3
Đáp án là B
Mà ∆ SAB đều
Vậy thể tích hình chóp S.ABCD: = 2 a 3 6 3
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = 2a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Thể tích của khối chóp S. ABCD bằng
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, đáy nhỏ của hình thang là CD, cạnh bên SC=a 15 . Tam giác SAD là tam giác đều cạnh bằng 2a và nằm trong mặt phẳng vuông góc với đáy. Gọi H là trung điểm AD, khoảng cách từ B đến mặt phẳng (SHC) bằng 2a 6 . Tính thể tích V của khối chóp S.ABCD?
Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt đáy. Tính theo a thể tích V của khối chóp S.ABCD.
A. V = a 3 15 6
B. V = a 3
C. V = 2 a 3
D. V = a 3 3 6
Cho hình chóp tam giác đều S.ABCD, cạnh đáy bằng a. Mặt bên tạo với mặt đáy một góc 60. Tính thể tích V của hình chóp S.ABCD. A)a³✓3/2 B)a³✓3/6 C)a³✓3/12 D)a³✓3/24
Cho hình chóp S. ABCD có đáy ABCD là hình chữ nhật với AB = a, BC = a 3 . Cạnh bên SA vuông góc với đáy và đường thẳng SC tạo với mặt phẳng (SAB) một góc 30 độ. Tính thể tích V của khối chóp S.ABCD theo a.
A. V = 2 6 a 3 3
B. V = 2 a 3 3
C. V = 3 a 3
D. V = 3 a 3 3
Cho hình chóp S.ABCD có đáy là hình chữ nhật với AB=2a; AD=a. Tam giác SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy. Góc giữa mặt phẳng (SBC) và (ABCD) bằng 45 0 . Khi đó thể tích khối chóp S.ABCD là:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB = a, AD = 2a. Mặt bên (SAB) là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính bán kính R của mặt cầu ngoại tiếp hình chóp S.ABCD
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a 3 , mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Thể tích của khối chóp S.ABCD là:
A. 9 3 a 3 2
B. a 3 2
C. 3 a 3 3
D. 3 a 3 2
Cho hình chóp S.ABCD có đáy là hình thang cân với đáy A B = 2 a , A D = B C = C D = a , mặt bên SAB là tam giác cân đỉnh S và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Biết khoảng cách từ A tới mặt phẳng (SBC) bằng 2 a 15 5 , tính theo a thể tích V của khối chóp